【题目】已知的两边、的长分别是关于x的一元二次方程的两个实数根,第三边的长为5.
(1)当为何值时, 是直角三角形;
(2)当为何值时, 是等腰三角形,并求出的周长.
【答案】(1)2;(2)14或6
【解析】试题分析:
(1)△ABC是以BC为斜边的直角三角形,即AB,AC的平方和是25,则一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根的平方和是25,根据韦达定理和勾股定理解出k的值,再把k的值代入原方程,检查k是哪个值时,△ABC是以BC为斜边的直角三角形则可;(2)根据等腰三角形的性质,分三种情况讨论:①AB=AC,②AB=BC,③BC=AC;后两种情况相同,则可有另种情况,再由根与系数的关系得出k的值,再求的周长。
试题解析:
(1)设边AB=a,AC=b
∵a、b是方程x2-(2k+3)x+k2+3k+2=0的两根
∴a+b=2k+3,a-b=k2+3k+2
又∵△ABC是以BC为斜边的直角三角形,且BC=5
∴a2+b2=52,
即(a+b)2-2ab=52,
∴(2k+3)2-2(k2+3k+2)=25
∴k2+3k-10=0
∴k1=-5或k2=2
当k=-5时,方程为:x2+7x+12=0
解得:x1=-3,x2=-4(舍去)
当k=2时,方程为:x2-7x+12=0
解得:x1=3,x2=4
∴当k=2时,△ABC是以BC为斜边的直角三角形.
(2)∵△ABC是等腰三角形;
∴当AB=AC时,△=b2-4ac=0,
∴(2k+3)2-4(k2+3k+2)=0
解得k不存在;
当AB=BC时,即AB=5,
∴5+AC=2k+3,5AC=k2+3k+2,
解得k=3或4,
∴AC=4或6,
∴△ABC的周长为14或16
科目:初中数学 来源: 题型:
【题目】据初步统计,2017年春节期间,安徽省累计接待游客2681.52万人次,实现旅游总收入142亿元,其中142亿用科学记数法表示为( )
A. 1.42×108B. 1.42×109C. 1.42×1010D. 1.42×1011
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分10分)抛物线与x轴交与,两点,
(1)求该抛物线的解析式;
(2)设(1)中的抛物线与y轴交于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com