精英家教网 > 初中数学 > 题目详情

【题目】如图,将△ABC沿射线BC方向平移3cm得到△DEF.若△ABC的周长为14cm,则四边形ABFD的周长为(  )

A. 14cm B. 17cm C. 20cm D. 23cm

【答案】C

【解析】

先根据平移的性质得DF=AC,AD=CF=3cm,再由ABC的周长为14cm得到AB+BC+AC=14cm,然后利用等线段代换可计算出AB+BC+CF+DF+AD=20(cm),于是得到四边形ABFD的周长为20cm.

∵△ABC沿BC方向平移3cm得到DEF,

DF=AC,AD=CF=3cm,

∵△ABC的周长为14cm,即AB+BC+AC=14cm,

AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=14+3+3=20(cm),

即四边形ABFD的周长为20cm.

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在下列条件中,不能作为判断ABD≌△BAC的条件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ACBC2,∠C90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线ACCBDE两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:

1)三角板绕点P旋转,观察线段PDPE之间有什么数量关系?并结合图②说明理由.

2)三角板绕点P旋转,△PCE是否能成为等腰三角形?若能,指出所有情况(即写出△PCE为等腰三角形时BE的长);若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.

(1)求每套队服和每个足球的价格是多少?

(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;

(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,CDAB,垂足为D,点EBC上,EFAB,垂足为F

1)求证: CDEF

2)如果∠1=2,且∠3=115°,求∠ACB的度数

3)若BC=6cmABC的面积是12cm2 ,则点A到直线BC的距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=36°,∠C=76°ADAF分别是△ABC的角平分线和高,求∠DAF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).

(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;

(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;

(3)如果锐锐每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为2的菱形ABCD中,∠A60°,MAD边的中点,NAB边上的一动点,将△AMN沿MN所在直线翻折得到△AMN,连接AC,则AC长度的最小值是_____

查看答案和解析>>

同步练习册答案