精英家教网 > 初中数学 > 题目详情
如图,△OAB是边长为4+2
3
的等边三角形,其中O是坐标原点,顶点B在y轴的正半轴上.将△OAB折叠,使点A与OB边上的点P重合,折痕与OA、AB的交点分别是E、F.如果PEx轴,
(1)求点P、E的坐标;
(2)如果抛物线y=-
1
2
x2+bx+c经过点P、E,求抛物线的解析式.
(1)设OP=x,则OE=2x,PE=
3
x.
根据折叠的性质可得AE=PE=
3
x,
则有OA=OE+AE=OE+PE=2x+
3
x=4+2
3

∴x=2,
∴OP=2,PE=2
3

因此P(0,2),E(2
3
,2);

(2)将P、E坐标代入抛物线可得:
-
1
2
×12+2
3
b+c=2
c=2

解得:
b=
3
c=2

∴抛物线的解析式为y=-
1
2
x2+
3
x+2.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(如005•宁波)已知抛物线y=-x-如kx+rk(k>0)交x轴于A、B两点,交y轴于点C,以AB为直径的⊙E交y轴于点y、着(如图),且y着=0,G是劣弧Ay上的动点(不与点A、y重合),直线CG交x轴于点P.
(1)求抛物线的解析式;
(如)当直线CG是⊙E的切线时,求ca左∠PC右的值;
(r)当直线CG是⊙E的割线时,作GM⊥AB,垂足为y,交P着于点M,交⊙E于另一点左,设M左=c,GM=u,求u关于c的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC是边长为4的等边三角形,AB在x轴上,点C在第一象限,AC交y轴于点D,点A的坐标为(-1,0).
(1)求B、C、D三点的坐标;
(2)抛物线y=ax2+bx+c经过B、C、D三点,求它的解析式;
(3)过点D作DEAB交经过B、C、D三点的抛物线于点E,求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C-D-E上移动,若点C、D、E的坐标分别为(-1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+c的图象与x轴交于点A(1,0)和点B(点B在点A右侧),与y轴交于点C(0,2).
(1)请说明a、b、c的乘积是正数还是负数;
(2)若∠OCA=∠CBO,求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与y轴的负半轴相交于点C,与x轴相交于A、B两点(如图),点C的坐标为(0,-3),且BO=CO
(1)求出B点坐标和这个二次函数的解析式;
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用长为24米的篱笆,一面利用10米的墙,围成一个中间隔有一道篱笆的长方形花园.设花园的宽AB为x米,面积为y米2
(1)求y与x之间的函数关系式
(2)当宽AB为多少是,围成面积最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知A点坐标为(6,0),B点坐标为(0,8),⊙A与y轴相切,AB交⊙O于点P,过点P作⊙A的切线交y轴于点C,交x轴于点D.
(1)证明:AD=AB;
(2)求经过A,D,C三点的抛物线的函数关系式;
(3)若点M在第一象限,且在(2)中的抛物线上,求四边形AMCD面积的最大值及此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

崇左市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分.则水喷出的最大高度是______米.

查看答案和解析>>

同步练习册答案