【题目】解下列一元二次方程:
(1)2x2﹣5x﹣1=0(用配方法解);(2)(2x﹣5)2=9(x+4)2.
【答案】(1)x1=,x2=;(2)x1=﹣,x2=﹣17.
【解析】分析:(1)移项得出2x2﹣5x=1,系数化成1得到x2﹣x=,配方得到(x﹣)2=,推出x﹣=±,求出即可;
(2)移项分解因式得到[(2x﹣5+3(x+4)][(2x﹣5﹣3(x+4)]=0,推出方程(5x+7)(x+17)=0,求出方程的解即可.
详解:(1)2x2﹣5x﹣1=0,2x2﹣5x=1,x2﹣x=,
(x﹣)2=,x﹣=±,
解得:x1=,x2=;
(2)(2x﹣5)2=9(x+4)2,
[(2x﹣5+3(x+4)][(2x﹣5﹣3(x+4)]=0,
(5x+7)(x+17)=0,
解得:x1=﹣,x2=﹣17.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,我们定义直线为抛物线、b、c为常数,的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.
已知抛物线与其“梦想直线”交于A、B两点点A在点B的左侧,与x轴负半轴交于点C.
填空:该抛物线的“梦想直线”的解析式为______,点A的坐标为______,点B的坐标为______;
如图,点M为线段CB上一动点,将以AM所在直线为对称轴翻折,点C的对称点为N,若为该抛物线的“梦想三角形”,求点N的坐标;
当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知甲乙两人在一个200米的环形跑道上练习跑步,现在把跑道分成相等的4段,即两条直道和两条弯道的长度相同.甲平均每秒跑4米,乙平均每秒跑6米,若甲乙两人分别从A、C两处同时相向出发(如图),试解答下列问题:
(1)几秒后两人首次相遇?请说出此时他们在跑道上的具体位置;
(2)首次相遇后,又经过多少时间他们再次相遇?
(3)他们第100次相遇时,在哪一段跑道上?(第(3)问直接写出结论即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2020的直角顶点的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:若一个三位数是312,则百位上数字为3,十位上数字为1,个位上数字为2,这个三位数可表示为3×100+1×10+2;若一个三位数是﹣312,则百位上数字为3,十位上数字为1,个位上数字为2,这个三位数可表示为﹣(3×100+1×10+2);
应用:有一个正的四位数,千位上数字为a,百位上数字为b,十位上数字为c,个位数字为d,且a>d,b﹣c>1.按顺序完成一下运算;
第一步:交换千位和个位上的数字也交换百位和十位上的数字,而构成另一个四位数;
第二步:用原四位数减去第一步构成的四位数,把这个新四位数记为M;
第三步:交换M的百位和十位上的数字,又构成一个新四位数,记为N;
第四部,将M和N相加
(1)第一步构成的另一个四位数可表示为 ;
(2)试判断M百位和十位的数字之和是否为定值?请说明理由.
(3)若M和N相加的值为8892,求a﹣d的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC的位置如图所示(小方格是边长1个单位长度的正方形).
(1)将△ABC沿轴方向向左平移6个单位,画出平移后得到的△A1B1C1;并写出A1的坐标;
(2)画出△A2B2C2,使得△ABC和△A2B2C2关于原点O中心对称;并写出C2的坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知函数的图像与轴交于点,一次函数的图像分别与轴、轴交于点,且与的图像交于点.
(1)求的值;
(2)若,则的取值范围是 ;
(3)求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在平行四边形ABCD中,E为AD上一点,且AB=AE,连接BE交AC于点H,过点A作AF⊥BC于F,交BE于点G.
(1)若∠D=50°,求∠EBC的度数;
(2)若AC⊥CD,过点G作GM∥BC交AC于点M,求证:AH=MC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是( ).
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com