【题目】如图,抛物线与x轴交于A(﹣4,0)、B(2,0)两点,与y轴交于C,M为此抛物线的顶点.
(1)求此抛物线的函数解析式;
(2)动直线l从与直线AC重合的位置出发,绕点A顺时针旋转,与直线AB重合时终止运动,直线l与BC交于点D,P是线段AD的中点.
①直接写出点P所经过的路线长为 ;
②点D与B、C不重合时,过点D作DE⊥AC于点E,作DF⊥AB于点F,连接PE、PF、EF,在旋转过程中,求EF的最小值;
(3)将抛物线C1平移得到抛物线C2,已知抛物线C2的顶点为N,与直线AC交于E、F两点,若EF=AC,求直线MN的解析式.
【答案】(1)y=﹣x2﹣x+4;(2)①;②;(3)y=x+
【解析】
(1)将点A、点B的坐标代入抛物线的解析式即可解决问题;
(2)①易得点P运动的路径是△ABC的中位线P1P2,只需运用勾股定理求出BC长,然后运用三角形中位线定理就可解决问题;②根据直角三角形斜边上的中线等于斜边的一半可得PE=PA=PD=PF,由此可得点A、E、D、F在以点P为圆心,为半径的圆上,根据圆周角定理可得∠EPF=2∠EAF.易得∠EAF=45°,则有∠EPF=90°,根据勾股定理可得,根据“点到直线之间垂线段最短”可得当AD⊥BC时,AD最小,此时EF最小,然后只需运用面积法求出此时AD的值,即可得到EF的最小值;
(3)运用待定系数法可求得直线AC的解析式为y=x+4,由EF=AC可得MN∥AC,从而可设直线MN的解析式为y=x+t,然后只需求出抛物线的顶点M的坐标,把点M的坐标代入y=x+t即可解决问题.
解:(1)∵抛物线 与x轴交于A(﹣4,0)、B(2,0)两点,
∴ ,
解得 ,
∴抛物线的解析式为y=﹣x2﹣x+4;
(2)①在Rt△BOC中,
.
∵点D是线段BC一点,P是线段AD的中点,
∴点P运动的路径是△ABC的中位线P1P2,如图1,
则.
故答案为:;
②如图2,
∵DE⊥AC,DF⊥AB,P是线段AD的中点,
∴PE=PA=PD=PF,
∴点A、E、D、F在以点P为圆心,为半径的圆上,
∴∠EPF=2∠EAF.
∵OA=OC=4,∠AOC=90°,
∴∠CAO=∠ACO=45°,
∴∠EPF=90°,
∴.
根据“点到直线之间,垂线段最短”可得:
当AD⊥BC时,AD最小,此时EF最小,
此时,,
解得:,
此时,
则EF的最小值为;
(3)如图3,
设直线AC的解析式为y=mx+n,
则有 ,
解得: ,
∴直线AC的解析式为y=x+4.
由EF=AC可得MN∥AC.
可设直线MN的解析式为y=x+t.
∵点M是抛物线的顶点,
∴点M的坐标为(﹣1, ),
把M(﹣1,)代入y=x+t,得
﹣1+t=,
解得t=,
∴直线MN的解析式为y=x+.
科目:初中数学 来源: 题型:
【题目】某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为万元/辆,经销一段时间后发现:当该型号汽车售价定为万元/辆时,平均每周售出辆;售价每降低万元,平均每周多售出辆.
(1)当售价为万元/辆时,平均每周的销售利润为___________万元;
(2)若该店计划平均每周的销售利润是万元,为了尽快减少库存,求每辆汽车的售价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为( )
A. 从D点出发,沿弧DA→弧AM→线段BM→线段BC
B. 从B点出发,沿线段BC→线段CN→弧ND→弧DA
C. 从A点出发,沿弧AM→线段BM→线段BC→线段CN
D. 从C点出发,沿线段CN→弧ND→弧DA→线段AB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点M是正方形ABCD内一点,△MBC是等边三角形,连接AM、MD.对角线BD交CM于点N,现有以下结论:①∠AMD=150°;②MA2=MNMC;③;④,其中正确的结论有____(填写序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点B在x轴的正半轴上,OB=,AB⊥OB,∠AOB=30°.把△ABO绕点O逆时针旋转150°后得到△A1B1O,则点A的对应点A1的坐标为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+(2k+1)x+k2+1=0.
(1)当方程有一个根为﹣1时,求k的值及另一个根;
(2)当方程有两个不相等的实数根,求k的取值范围;
(3)若方程两实根x1、x2满足x1+x2=x1x2,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数解析式;
(2)设点M是直线l上的一个动点,当点M到点A,点C的距离之和最短时,求点M的坐标;
(3)在抛物线上是否存在点N,使S⊿ABN=S⊿ABC,若存在,求出点N的坐标,若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在等腰中,,,动点从点出发以的速度沿匀速运动,动点同时从点出发以同样的速度沿的延长线方向匀速运动,当点到达点时,点、同时停止运动,设运动时间为.过点作交于点,以、为边作平行四边形.
(1)当为何值时,为直角三角形;
(2)设四边形的面积为,求与的函数关系式;
(3)在运动过程中,是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由;
(4)是否存在某一时刻,使点在的平分线上?若存在,求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设二次函数y1=ax2+bx+a﹣5(a,b为常数,a≠0),且2a+b=3.
(1)若该二次函数的图象过点(﹣1,4),求该二次函数的表达式;
(2)y1的图象始终经过一个定点,若一次函数y2=kx+b(k为常数,k≠0)的图象也经过这个定点,探究实数k,a满足的关系式;
(3)已知点P(x0,m)和Q(1,n)都在函数y1的图象上,若x0<1,且m>n,求x0的取值范围(用含a的代数式表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com