精英家教网 > 初中数学 > 题目详情
△ABC中,∠ABC、∠ACB的平分线相交于点O.
(1)若∠ABC=40°,∠ACB=50°,则∠BOC=
135°
135°

(2)若∠ABC+∠ACB=116°,则∠BOC=
122°
122°

(3)若∠A=76°,则∠BOC=
128°
128°

(4)你能找出∠BOC与∠A以之间的数量关系吗?并说明理由.
分析:(1)首先根据角平分线定义可得∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,再根据∠ABC=40°,∠ACB=50°可得∠OBC=20°,∠OCB=25°,然后根据三角形内角和定理可算出∠BOC的度数;
(2)根据∠ABC+∠ACB=116°可算出∠OBC+∠OCB=
1
2
×116°=58°,然后根据三角形内角和定理可算出∠BOC的度数;
(3)根据∠A=76°可得∠ABC+∠ACB=104°可算出∠OBC+∠OCB,然后根据三角形内角和定理可算出∠BOC的度数;
(3)∠BOC=90°+
1
2
∠A.根据三角形内角和定理进行计算即可.
解答:解:(1)∵BO平分∠ABC,CO平分∠ACB,
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,
∵∠ABC=40°,∠ACB=50°,
∴∠OBC=20°,∠OCB=25°,
∴∠BOC=180°-20°-25°=135°;

(2)∵∠ABC+∠ACB=116°,
∴∠OBC+∠OCB=
1
2
×116°=58°
∴∠BOC=180°-58°=122°;

(3)∵∠A=76°,
∴∠ABC+∠ACB=180°-76°=104°,
∴∠OBC+∠OCB=
1
2
×104°=52°
∴∠BOC=180°-52°=128°;

(4)∠BOC=90°+
1
2
∠A.
理由如下:
∵∠BOC=180°-∠OBC-OCB,
=180°-(∠OBC+∠OCB),
=180°-(∠ABC+∠ACB),
=180°-(180°一∠A),
=180°-90°+
1
2
∠A,
=90°+
1
2
∠A.
即∠BOC=90°+
1
2
∠A.
点评:此题主要考查了三角形内角和定理,以及角平分线的性质,关键是掌握三角形内角和为180°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

20、问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内的一点,且AD=CD,BD=BA.探究∠DBC与∠ABC度数的比值.
请你完成下列探究过程:
先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当∠BAC=90°时,依问题中的条件补全右图;
观察图形,AB与AC的数量关系为
相等
;当推出∠DAC=15°时,可进一步推出∠DBC的度数为
15°
;可得到∠DBC与∠ABC度数的比值为
1:3

(2)当∠BAC<90°时,请你画出图形,研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.

查看答案和解析>>

科目:初中数学 来源:江苏期中题 题型:解答题

如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH?H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH?重叠部分的面积为y,求y与t的函数关系.

查看答案和解析>>

科目:初中数学 来源:湖南省中考真题 题型:解答题

如图1,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH∶AC=2∶3。
(1)延长HF交AB于G,求△AHG的面积;
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B 重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图2)。
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由;
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系。

查看答案和解析>>

同步练习册答案