【题目】已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.
求证:
(1)AD=BD;
(2)DF是⊙O的切线.
【答案】
(1)证明:证法一:连结CD,
∵BC为⊙O的直径
∴CD⊥AB
∵AC=BC
∴AD=BD
证法二:连结CD,
∵BC为⊙O的直径
∴∠ADC=∠BDC=90°
∵AC=BC,CD=CD
∴△ACD≌△BCD
∴AD=BD
(2)证明:证法一:连结OD,
∵AD=BD,OB=OC
∴OD∥AC
∵DE⊥AC
∴DF⊥OD
∴DF是⊙O的切线.
证法二:连结OD,
∵OB=OD
∴∠BDO=∠B
∵∠B=∠A
∴∠BDO=∠A
∵∠A+∠ADE=90°
∴∠BDO+∠ADE=90°
∴∠ODF=90°
∴DF是⊙O的切线.
【解析】(1)连接DC,可构造直径所对的90度的圆周角,再利用等腰三角形的性质,可证出结论;(2)连接OD,证ODDF,利用直径的性质和等腰三角形的性质可证出结论.
科目:初中数学 来源: 题型:
【题目】先阅读下列一段文字,再解答问题
已知在平面内有两点,,其两点间的距离公式为,同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为或
已知点,,试求A,B两点间的距离;
已知点A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为,试求A,B两点间的距离;
已知点,,判断线段AB,BC,AC中哪两条是相等的?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知l1∥l2,MN分别和直线l1、l2交于点A、B,ME分别和直线l1、l2交于点C、D,点P在MN上(P点与A、B、M三点不重合).
(1)如果点P在A、B两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由;
(2)如果点P在A、B两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探索题:图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.
(1)请用两种不同的方法,求图b中阴影部分的面积:
方法1: ; 方法2: ;
(2)观察图b,写出代数式, , 之间的等量关系,并通过计算验证;
(3)根据(2)题中的等量关系,解决如下问题:若, ,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图.AD∥BE,∠1=∠2,求证:∠A=∠E.请完成解答过程.
证明:∵AD∥BE(已知)
∴∠A=∠ ( )
又∵∠1=∠2(已知)
∴AC∥ ( )
∴∠3=∠ (两直线平行,内错角相等)
∴∠A=∠E(等量代换)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC三个顶点的位置如图所示(每个小正方形的边长均为 1),△ABC中任意一点 P(x,y)平移后的对应点为 P′(x+3,y+2).
(1)将△ABC按此规律平移后得到△A′B′C′请画出平移后的△A′B′C′(其中 A′,B′,C′分别是A,B,C的对应点,不写画法).
(2)直接写出 A′,B′,C′三点的坐标:A′(____,____),B′(____,____),C′(____,____).
(3)求△A′B′C′的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时后达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园. 如图是他们离家路程s(km)与小明离家时间t(h)的关系图,请根据图回答下列问题:
(1)图中自变量是____,因变量是______;
(2)小明家到滨海公园的路程为____ km,小明在中心书城逗留的时间为____ h;
(3)小明出发______小时后爸爸驾车出发;
(4)图中A点表示___________________________________;
(5)小明从中心书城到滨海公园的平均速度为______km/h,小明爸爸驾车的平均速度为______km/h;(补充;爸爸驾车经过______追上小明);
(6)小明从家到中心书城时,他离家路程s与坐车时间t之间的关系式为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com