精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,AB=15AC=13,高AD=12,则的周长为_______________

【答案】3242

【解析】

根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案

当△ABC是钝角三角形时,

∵∠D=90°AC=13AD=12

,

∵∠D=90°AB=15AD=12

,

BC=BD-CD=9-5=4

∴△ABC的周长=4+15+13=32

当△ABC是锐角三角形时,

∵∠ADC=90°AC=13AD=12

∵∠ADB=90°AB=15AD=12

BC=BD-CD=9+5=14

∴△ABC的周长=14+15+13=42

综上,△ABC的周长是3242

故答案为:3242.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D,E,F分别是BC,AB, AC的中点,则下列四个判断中不一定正确的是( )

A. 四边形AEDF一定是平行四边形

B. 若∠A=90°,则四边形AEDF是矩形

C. AD平分∠A,则四边形AEDF是正方形

D. ADBC,则四边形AEDF是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD是∠ACB的平分线,∠EDC=25,∠DCE=25,∠B=70

1)试证明:DEBC

2)求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣x+8分别交两轴于点AB,点C的横坐标为4,点D在线段OA上,且AD7

1)求直线CD的解析式;

2P为直线CD上一点,若PAB面积为20,求P的坐标;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第一次

第二次

第三次

第四次

第五次

第六次

平均成绩

中位数

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5


(1)完成表中填空①;②
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩方差为 ,你认为推荐谁参加比赛更合适,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.

求证:
(1)AD=BD;
(2)DF是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如果一个数的平方等于 ,记为 ,这个数 叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为 为实数), 叫这个复数的实部, 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.
例如计算:
(1)填空: = =
(2)填空:① ; ②
(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知, ,( 为实数),求 的值.
(4)试一试:请利用以前学习的有关知识将 化简成 的形式.
(5)解方程:x2 - 2x +4 = 0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】发现与探索:你能求(x1)(x2019+x2018+x2017+……+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值:

1)(x1)(x+1)=x21

2)(x1)(x2+x+1)=x31

3)(x1)(x3+x2+x+1)=x41

……

由此我们可以得到:(x1)(x2019+x2018+x2017+……+x+1)=   ;请你利用上面的结论,完成下面两题的计算:

132019+32018+32017+……+3+1

2)(﹣250+(﹣249+(﹣248+……+(﹣2).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化归与转化的思想是指在研究解决数学问题时采用某种手段将问题通过变换使之转化,进而使问题得到解决。

(1)我们知道可以得到。如果,求的值.

(2)已知 试问多项式a2+b2+c2abacbc的值是否与变量的取值有关?若有关请说明理由;若无关请求出多项式的值.

查看答案和解析>>

同步练习册答案