【题目】发现与探索:你能求(x﹣1)(x2019+x2018+x2017+……+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值:
(1)(x﹣1)(x+1)=x2﹣1;
(2)(x﹣1)(x2+x+1)=x3﹣1;
(3)(x﹣1)(x3+x2+x+1)=x4﹣1;
……
由此我们可以得到:(x﹣1)(x2019+x2018+x2017+……+x+1)= ;请你利用上面的结论,完成下面两题的计算:
(1)32019+32018+32017+……+3+1;
(2)(﹣2)50+(﹣2)49+(﹣2)48+……+(﹣2).
【答案】x2020-1;(1)(2)
【解析】
根据所给式子从而总结出规律是(x-1)(x2019+x2018+x2017+…+x+1)=x2020-1.
(1)将32019+32018+32017+……+ 3+1;写成(3-1)(32019+32018+32017+…+3+1)÷2的形式进行计算即可.
(2)(-2)50+(-2)49+(-2)48+……+ (-2)=(-2-1)[ (-2)50 + (-2)49+ (-2)48+……+ (-2) +1]÷(-3)-1,根据规律计算即可.
解:根据规律可得:x2020-1
(1)∵(3-1)(32019+32018+32017+…+3+1) = 32020-1,
∴ 32019+32018+32017+…+3+1=.
(2) (-2)50 + (-2)49+ (-2)48+……+ (-2)
=(-2)50 + (-2)49+ (-2)48+……+ (-2) +1-1
=(-2-1)[ (-2)50 + (-2)49+ (-2)48+……+ (-2) +1]÷(-3)-1
=-1
=
科目:初中数学 来源: 题型:
【题目】一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:
(1)甲,乙两组工作一天,商店各应付多少钱?
(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?
(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC三个顶点的位置如图所示(每个小正方形的边长均为 1),△ABC中任意一点 P(x,y)平移后的对应点为 P′(x+3,y+2).
(1)将△ABC按此规律平移后得到△A′B′C′请画出平移后的△A′B′C′(其中 A′,B′,C′分别是A,B,C的对应点,不写画法).
(2)直接写出 A′,B′,C′三点的坐标:A′(____,____),B′(____,____),C′(____,____).
(3)求△A′B′C′的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两只小蚂蚁在如图所示的数轴上爬行,蚂蚁甲从图中点A的位置沿数轴向右爬了4个单位长度到达点C处,蚂蚁乙从图中点B的位置沿数轴向左爬了8个单位长度到达点D处.
(1)在图中描出点C、D的位置;
(2)点E到点C与点D的距离相等,在数轴上描出点E的位置,并用“<”把点A、B、C、D、E所表示的数连接起来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y=kx+b(k≠0)过点(1,2)
(1)填空:b= (用含k代数式表示);
(2)将此直线向下平移2个单位,设平移后的直线交x于点A,交y于点B,x轴上另有点C(1+k,0),使得△ABC的面积为2,求k值;
(3)当1≤x≤3,函数值y总大于零,求k取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2016次后,顶点A在整个旋转过程中所经过的路程之和是( )
A.2015π
B.3019.5π
C.3018π
D.3024π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察一列数:1、2、4、8、16、32、…,发现从第二项开始,每一项与前一项的比值都是同一个常数,这个常数是_______;根据此规律,如果(为正整数)表示这个数列的第项,如果,,那么_____,…,_______;
如果欲求的值,
可令…………①
将①式两边同乘以2,得
……………②
由②减去①式,得.
(2)类比可得:__________.
(3)用由特殊到一般的方法知:若数列、、、…、,从第二项开始每一项与前一项之比的常数为,那么,____,…,______ (用含,,的代数式表示).
用含,,的代数式表示_________.
(4)一质点从距离原点一个单位的A点向原点方向跳动,第一次跳到OA中点处,第二次从跳到的中点处,第三次从跳到的中点处,…,如此不断跳下去,则第50次跳动后,该质点跳动的距离是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com