【题目】观察一列数:1、2、4、8、16、32、…,发现从第二项开始,每一项与前一项的比值都是同一个常数,这个常数是_______;根据此规律,如果(为正整数)表示这个数列的第项,如果,,那么_____,…,_______;
如果欲求的值,
可令…………①
将①式两边同乘以2,得
……………②
由②减去①式,得.
(2)类比可得:__________.
(3)用由特殊到一般的方法知:若数列、、、…、,从第二项开始每一项与前一项之比的常数为,那么,____,…,______ (用含,,的代数式表示).
用含,,的代数式表示_________.
(4)一质点从距离原点一个单位的A点向原点方向跳动,第一次跳到OA中点处,第二次从跳到的中点处,第三次从跳到的中点处,…,如此不断跳下去,则第50次跳动后,该质点跳动的距离是多少?
科目:初中数学 来源: 题型:
【题目】发现与探索:你能求(x﹣1)(x2019+x2018+x2017+……+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值:
(1)(x﹣1)(x+1)=x2﹣1;
(2)(x﹣1)(x2+x+1)=x3﹣1;
(3)(x﹣1)(x3+x2+x+1)=x4﹣1;
……
由此我们可以得到:(x﹣1)(x2019+x2018+x2017+……+x+1)= ;请你利用上面的结论,完成下面两题的计算:
(1)32019+32018+32017+……+3+1;
(2)(﹣2)50+(﹣2)49+(﹣2)48+……+(﹣2).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“化归与转化的思想”是指在研究解决数学问题时采用某种手段将问题通过变换使之转化,进而使问题得到解决。
(1)我们知道可以得到。如果,求、的值.
(2)已知 试问多项式a2+b2+c2﹣ab﹣ac﹣bc的值是否与变量的取值有关?若有关请说明理由;若无关请求出多项式的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P为抛物线在第二象限内一点,过点P作x轴的垂线,垂足为点M,与直线AB交于点C,过点P作x轴的平行线交抛物线于点Q,过点Q作x轴的垂线,垂足为点N,若点P在点Q左边,设点P的横坐标为m.
①当矩形PQNM的周长最大时,求△ACM的面积;
②在①的条件下,当矩形PMNQ的周长最大时,过直线AC上一点G作y轴的平行线交抛物线一点F,是否存在点F,使得以点P、C、G、F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知的一条边的长为5,另两边的长是关于的一元二次方程的两个实数根.
(1)求证:无论为何值,方程总有两个不相等的实数根;
(2)当为何值时,为直角三角形,并求出的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com