精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别是(-3,0),(2,0),则方程ax2+bx+c=0(a≠0)的解是.

【答案】.x1=-3,x2=2
【解析】∵抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别是(3,0),(2,0),
∴当x=3或x=2时,y=0,
即方程 的解为
所以答案是:
【考点精析】关于本题考查的抛物线与坐标轴的交点,需要了解一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察一列数:12481632,发现从第二项开始,每一项与前一项的比值都是同一个常数,这个常数是_______;根据此规律,如果(为正整数)表示这个数列的第项,如果,那么____________

如果欲求的值,

可令…………

将①式两边同乘以2,得

……………

由②减去①式,得.

(2)类比可得:__________.

(3)用由特殊到一般的方法知:若数列,从第二项开始每一项与前一项之比的常数为,那么__________ (用含的代数式表示).

用含的代数式表示_________.

(4)一质点从距离原点一个单位的A点向原点方向跳动,第一次跳到OA中点处,第二次从跳到的中点处,第三次从跳到的中点处,,如此不断跳下去,则第50次跳动后,该质点跳动的距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知DCFP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG

(1)说明:DCAB

(2)求∠PFH的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点A在射线CE上,∠C=∠D

⑴如图1,若ADBC,求证:BDAC

⑵如图2,若∠BAC=∠BADBDBC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;

⑶如图3,在⑵的条件下,过点DDFBC交射线于点F,当∠DFE8DAE时,求∠BAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点,点是三角形上任意一点,三角形经过平移后得到三角形,点的对应点为.

1)直接写出点的坐标______________.

2)画出三角形平移后的三角形.

3)在轴上是否存在一点,使三角形的面积等于三角形面积的,若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,点A是反比例函数y=-图象上一点,过点Ax轴的垂线,垂足为B点,若OA=2,则AOB的周长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ABCD,∠BAD、∠ADC的平分线AEDF分别与线段BC相交于点EF,∠DFC=30°,AEDF相交干点G,则∠AEC=________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,ABC三点的坐标分别为(-6,7)、(-3,0)、(0,3.

1)画出△ABC,并求△ABC的面积.

(2)在平面直角坐标系中平移△ABC,使点C经过平移后的对应点为C'(5,4),平移后△ABC得到△A'B'C',画出平移后的△A'B'C',并写出点A',B'的坐标

3P(-3m)为△ABC中一点,将点P向右平移4个单位后,再向上平移6个单位得到点Q(n,-3),则m= n=

查看答案和解析>>

同步练习册答案