精英家教网 > 初中数学 > 题目详情

【题目】如图①,有张写有实数的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开两张都是无理数的概率是(

A. B. C. D.

【答案】D

【解析】

找出6张卡片中无理数的个数,列表得出所有等可能的情况数,即可确定出从中任意翻开两张都是无理数的概率.

卡片中的无理数为π-3;
列表如下:

---

(有,无)

(无,无)

(有,无)

(无,无)

(有,无)

(无,有)

---

(无,有)

(有,有)

(无,有)

(有,有)

(无,无)

(有,无)

---

(有,无)

(无,无)

(有,无)

(无,有)

(有,有)

(无,有)

---

(无,有)

(有,有)

(无,无)

(有,无)

(无,无)

(有,无)

---

(有,无)

(无,有)

(有,有)

(无,有)

(有,有)

(无,有)

---

所有等可能的情况有30种,其中两个都为无理数的有6种情况,
则从中任意翻开两张都是无理数的概率P=

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D,F分别在AC,BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是(

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】西安市在创建文明城区的活动中,有两个长度相等的彩色砖道铺设任务,分别交给甲、乙两个施工队同时进行施工,如图是反映所铺设的彩色砖道的长度y(米)与施工时间x(小时)之间关系的部分图象,请解答下列问题:

(1)求乙队在0x6的时段内yx的函数关系式.

(2)如果甲队施工速度不变,乙队在施工6小时后,施工速度增加到12/小时,结果两队同时完成了任务,求甲队从开始施工到完成所铺设的彩色砖道的长度为多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣x2+bx+c与x轴交于A(2,0),B(﹣4,0)两点.

(1)求该抛物线的解析式;
(2)若抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(3)在抛物线的第二象限图象上是否存在一点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若不存,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题中,真命题的个数( )
(1)⊙O的半径为5,点P在直线l上,且OP=5,则直线l与⊙O相切
(2)在Rt△ABC中,∠C=90°,AC=5,BC=12,则△ABC的外接圆半径为6.5
(3)正多边形都是轴对称图形,也都是中心对称图形
(4)三角形的外心到三角形各边的距离相等.
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=BC.延长DA与⊙O的另一个交点为E,连接AC,CE.

(1)求证:∠B=∠D;
(2)若AB=13,BC﹣AC=7,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,AB=AC,BAC=90°,OBC的中点。

(1)写出点OABC的三个顶点A、B、C的距离的大小关系并说明理由;

(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断OMN的形状,并证明你的结论。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分ABCPBD上一点,过点PPM^ADPN^CD,垂足分别为MN

1)求证:ADB=CDB

2)若ADC=90°,求证:四边形MPND是正方形。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】己知:在△ABC中,∠CAB=2α,且0°<α<30°,AP平分∠CAB.

(1)如图,若α=21°,ABC=32°,且APBC于点P,试探究线段AB、ACPB之间的数量关系,并对你的结论加以证明;

(2)如图,若∠ABC=60°-α,点P在△ABC的内部,且使∠CBP=30°,直接写出∠APC的度数________(用含α的代数式表示).

查看答案和解析>>

同步练习册答案