精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中,Rt△AOB的两条直角边OAOB分别在x轴的负半轴,y轴的负半轴上,且OA=2OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO

1)写出点ABCD的坐标;

2)求点A和点C之间的距离.

【答案】1A-20B0-1C12D10)(2

【解析】试题(1)根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减:可得AC点的坐标;

2)根据点的坐标,在Rt△ACD中,AD=OA+OD=3CD=2,借助勾股定理可求得AC的长.

试题解析:(1)点A的坐标是(-20),点C的坐标是(12).

2)连接AC

Rt△ACD中,AD=OA+OD=3CD=2

∴AC2=CD2+AD2=22+32=13

∴AC=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在 点上正方 处发出一球,羽毛球飞行的高度 与水平距离 之间满足函数表达式 .已知点 与球网的水平距离为 ,球网的高度为
(1)当 时,①求 的值;②通过计算判断此球能否过网;
(2)若甲发球过网后,羽毛球飞行到 处时,乙扣球成功。已知点 离点 的水平距离为 ,离地面的高度为 的,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,且平分于点.①若,则_______,则的周长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,BAC=90°AC=2AB,点DAC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与AD重合,连接BEEC

试猜想线段BEEC的数量及位置关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角梯形中,边上一点,,且.连接交对角线,连接.下列结论:

为等边三角形;

.其中结论正确的是

A.只有①②

B.只有①②④

C.只有③④

D①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆O在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2 , ④OD:OC=DE:EC,⑤OD2=DECD,正确的有(
A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(﹣1,﹣1),B32),C14

1)画出△ABC向上平移2个单位,向左平移3个位置后的△ABC

2)写出AC的对应点AC的坐标;

3)求两次平移过程中线段AC扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,连结CD,某抛物线y=ax2+bx+c(a≠0)经过点D、点E(1,1).

(1)若该抛物线过原点O,则a=
(2)若点Q在抛物线上,且满足∠QOB与∠BCD互余,要使得符合条件的Q点的个数是4个,则a的取值范围是

查看答案和解析>>

同步练习册答案