精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为半圆O在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2 , ④OD:OC=DE:EC,⑤OD2=DECD,正确的有(
A.2个
B.3个
C.4个
D.5个

【答案】C
【解析】解:连接OE,如图所示:

∵AD与圆O相切,DC与圆O相切,BC与圆O相切,

∴∠DAO=∠DEO=∠OBC=90°,

∴DA=DE,CE=CB,AD∥BC,

∴CD=DE+EC=AD+BC,选项②正确;

在Rt△ADO和Rt△EDO中,

∴Rt△ADO≌Rt△EDO(HL),

∴∠AOD=∠EOD,

同理Rt△CEO≌Rt△CBO,

∴∠EOC=∠BOC,

又∠AOD+∠DOE+∠EOC+∠COB=180°,

∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项①正确;

∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,

∴△EDO∽△ODC,

= ,即OD2=DCDE,选项⑤正确;

∵∠AOD+∠COB=∠AOD+∠ADO=90°,

∠A=∠B=90°,

∴△AOD∽△BOC,

= = = ,选项③正确;

同理△ODE∽△OEC,

,选项④错误;

故选C.

连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC为直角,选项①正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DECD,选项⑤正确;由△AOD∽△BOC,可得 = = = ,选项③正确;由△ODE∽△OEC,可得 ,选项④错误.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校课外兴趣小组在本校学生中开展感动中国2014年度人物先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示非常了解”,B类表示比较了解”,C类表示基本了解”,D类表示不太了解,划分类别后的数据整理如下表:

类别

A

B

C

D

频数

30

40

24

b

频率

a

0.4

0.24

0.06

(1)表中的a=________,b=________;

(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;

(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:

事件A

必然事件

随机事件

m的值


(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于 ,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,Rt△AOB的两条直角边OAOB分别在x轴的负半轴,y轴的负半轴上,且OA=2OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO

1)写出点ABCD的坐标;

2)求点A和点C之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图方格纸中的每个小方格都是边长为1个单位的正方形在建立平面直角坐标系后,△ABC的三个顶点的坐标分别是A(2,2),B(1,0),C(3,1).

(1)画出△ABC关于x轴对称的△ABC′,并求出点A′、B′、C′的坐标

(2)在坐标平面内是否存在点D使得△COD为等腰三角形?若存在直接写出点D的坐标找出满足条件的两个点即可);若不存在请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明爸爸装修要粉刷断居室的墙面,在家装商场选购某品牌的乳胶漆:

规格(升/桶)

价格(元/桶)

大桶装

18

225

小桶装

5

90

小明爸估算家里的粉刷面积,若买大桶装,则需若干桶但还差2升;若买小桶装,则需多买11桶但会剩余1升,

1)小明爸预计墙面的粉刷需要乳胶漆多少升?

2)喜迎新年,商场进行促销:满1000120元现金,并且该品牌商家对小桶装乳胶漆有41“的促销活动,小明爸打算购买小桶装,比促销前节省多少钱?

3)在(2)的条件下,商家在这次乳胶漆的销售买卖中,仍可盈利25%,则小桶装乳胶漆每桶的成本是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰Rt△CDE,连接AD,下列说法:①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四边形ABCD的面积有最大值,且最大值为 .其中,正确的结论是(
A.①②④
B.①③⑤
C.②③④
D.①④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 我们定义:如图1、图2、图3,在ABC中,把AB绕点A顺时针旋转αα180°)得到AB,把AC绕点A逆时针旋转β得到AC,连接BC,当α+β180°时,我们称AB'CABC旋补三角形ABCB'C上的中线AD叫做ABC旋补中线,点A叫做旋补中心.图1、图2、图3中的ABC均是ABC旋补三角形

1)①如图2,当ABC为等边三角形时,旋补中线ADBC的数量关系为:AD   BC

②如图3,当∠BAC90°BC8时,则旋补中线AD长为   

2)在图1中,当ABC为任意三角形时,猜想旋补中线ADBC的数量关系,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.ABC的三个顶点ABC都在格点上,将ABC绕点A按顺时针方向旋转90°得到ABC

1)在正方形网格中,画出AB'C

2)画出ABC向左平移4格后的ABC

3)计算线段AB在变换到AB的过程中扫过区域的面积.

查看答案和解析>>

同步练习册答案