精英家教网 > 初中数学 > 题目详情
6.若方程$\frac{1}{4-{x}^{2}}$+2=$\frac{k}{x-2}$有增根,求k的值.

分析 增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出k的值.

解答 解:方程两边都乘(x+2)(x-2),得
-1+2(x2-4)=k(x+2)
∵原方程增根为x=2,x=-2.
∴把x=2代入整式方程,得k=-$\frac{1}{4}$.
x=-2时,-1+2(x2-4)=k(x+2)不成立.

点评 本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.已知关于x的二次式x2+mx+n,当m=5,n=6时(写出一组满足条件的整数值即可),它在有理数范围内能够进行因式分解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.2016无锡“五一”车展期间,某公司对参观车展的且有购车意向的消费者进行了随机问卷调查,共发放900份调查问卷,并收回有效问卷750份.工作人员对有效调查问卷作了统计,其中,将消费者年收入的情况整理后,制成表格如下:
年收入(万元)4.867.2910
被调查的消费者人数(人)1503381606042
将消费者打算购买小车的情况整理后,绘制出频数分布直方图(如图,尚未绘完整).(注:每组包含最小值不包含最大值.)
请你根据以上信息,回答下列问题:
(1)根据表格中信息可知,被调查消费者的年收入的平均数是6.48万元.(精确到0.01)
(2)请在右图中补全这个频数分布直方图.
(3)打算购买价格10万元以下(不含10万元)小车的消费者人数占被调查消费者人数的百分比是50%.
(4)本次调查的结果,是否能够代表全市所有居民的年收入情况和购车意向?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.小张骑车往返于甲、乙两地,距甲地的路程y(千米)与时间x(时)的函数图象如图所示.
(1)小张在路上停留1小时,他从乙地返回时骑车的速度为30千米/时;
(2)小王与小张同时出发,按相同路线匀速前往乙地,距甲地的路程y(千米)与时间x(时)的函数关系式为y=12x+10.请作出此函数图象,并利用图象回答:小王与小张在途中共相遇2次;
(3)请你计算第一次相遇的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.老师在黑板上出了一道解方程的题:4(2x-1)=1-3(x+2),小明马上举手,要求到黑板上做,他是这样做的:
8x-4=1-3x+6,①8x-3x=1+6-4,②
5x=3,③x=$\frac{5}{3}$.④
老师说:小明解一元一次方程没有掌握好,因此解题时出现了错误,请你指出他错在哪一步:①②④(填编号),并说明理由.然后,你自己细心地解这个方程.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.已知|x|=3,|y|=2,且xy<0,则x-y的值等于(  )
A.5B.5或-5C.-5D.-5或1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算
(1)(2$\sqrt{3}$+$\sqrt{2}$)(2$\sqrt{3}$-$\sqrt{2}$);
( 2)$\frac{2}{\sqrt{3}+1}$+$\frac{\sqrt{3}}{2}$+1;
(3)3$\sqrt{18}$+$\frac{1}{5}$$\sqrt{50}$-4$\sqrt{\frac{1}{2}}$;
(4)($\frac{3}{4}$$\sqrt{15}$-$\sqrt{12}$)÷$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,
且EF∥AD,AE:EB=2:1;
(1)求线段EF的长;
(2)设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,试用$\overrightarrow a$、$\overrightarrow b$表示向量$\overrightarrow{EC}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中.直线y=-x+3与x轴交于点B,与y轴交于点C,抛物线y=ax2+bx+c经过B,C两点,与x轴负半轴交于点A,连结AC,tan∠CAB=3
(1)求抛物线的解析式;
(2)点P(m,n)是抛物线上在第一象限内的一点,求四边形OCPB面积S关于m的函数表达式及S的最大值;
(3)若M为抛物线的顶点,点Q在直线BC上,点N在直线BM上,Q,M,N三点构成以MN为底边的等腰直角三角形,求点N的坐标.

查看答案和解析>>

同步练习册答案