【题目】小颖和小红两名同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验。
(1)小颖和小红在实验中如果各掷一枚骰子,那么两枚骰子朝上的点数之和为多少时的概率最大?试用列表或画树状图的方法加以说明,并求出其最大概率。
(2)他们在一次实验中共掷骰子60次,试验的结果如下:
①填空:此次实验中“5点朝上”的频率为______;
②小红说:“根据实验,出现5点朝上的概率最大。”她的说法正确吗?为什么?
【答案】(1)P(点数之和为7) =;(2)①;②说法是错误的。在这次试验中,“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大。因为当试验的次数较大时,频率稳定于概率,但并不完全等于概率。
【解析】
(1)列举出所有情况,比较两枚骰子朝上的点数之和的情况数,进而让最多的情况数除以所有情况数的即可.
(2)①让5出现的次数除以总次数即为所求的频率;②根据概率的意义,需要大量试验才行.
解:(1)列表如下
(1,6) | (2,6) | (3,6) | (4,6) | (5,6) | (6,6) |
(1,5) | (2,5) | (3,5) | (4,5) | (5,5) | (6,5) |
(1,4) | (2,4) | (3,4) | (4,4) | (5,4) | (6,4) |
(1,3) | (2,3) | (3,3) | (4,3) | (5,3) | (6,3) |
(1,2) | (2,2) | (3,2) | (4,2) | (5,2) | (6,2) |
(1,1) | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) |
由表格可以看出,总情况数有36种,之和为7的情况数最多,为6种,
所以P(点数之和为7)==.
(2)①)①此次试验中“5点朝上”的频率为20÷60=;
②说法是错误的.在这次试验中,“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.因为当试验的次数较大时,频率稳定于概率,但并不完全等于概率.
科目:初中数学 来源: 题型:
【题目】如图,点C为△ABD外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°.
(1)求证:BD是该外接圆的直径;
(2)连结CD,求证:AC=BC+CD;
(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究,三者之间满足的等量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=120°,AB=AC=6,D为边AB上一动点(不与B点重合),连接CD,将线段CD绕着点D逆时针旋转90°得到DE,连接BE,则S△BDE的最大值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系内一点M(x,y)(x≠0),若则称k为点M的“倾斜比”,如图,⊙B与y轴相切于点A,点B的坐标为(3,5),点P为⊙B上的动点,则点P的“倾斜比”k的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“测量物体的高度” 活动中,某数学兴趣小组的3名同学选择了测量学校里的三棵树的高度.在同一时刻的阳光下,他们分别做了以下工作:
小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4米(如图1).
小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.
小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.3米,一级台阶高为0.3米,落在地面上的影长为4.5米.
(1)在横线上直接填写甲树的高度为 米.
(2)求出乙树的高度.
(3)请选择丙树的高度为( )
A、6.5米 B、5. 5米 C、6.3米 D、4.9米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;
(2)在图②中,若AP1=2,则CQ等于多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是弧上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是
A. (sinα,sinα) B. (cosα,cosα) C. (cosα,sinα) D. (sinα,cosα)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:
(1)工人甲第几天生产的产品数量为70件?
(2)设第x天生产的产品成本为P元/件,P与的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时利润最大,最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com