精英家教网 > 初中数学 > 题目详情

【题目】如图所示,下列条件中,能判断直线L1L2的是( )

A. ∠2=∠3 B. ∠l=∠3 C. ∠4+∠5=180 D. ∠2=∠4

【答案】B

【解析】平行线的判定定理有:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行.根据以上内容判断即可.

A.2和∠3不是直线L1、L2被第三条直线所截形成的角,故不能判断直线L1L2

B.∵∠1=3,L1∥L2 (同位角相等两直线平行);

C.4、5是直线L1、L2被第三条直线所截形成的同位角,故∠4+5=180不能判断直线L1L2.

D.2、4是直线L1、L2被第三条直线所截形成的同旁内角,故∠2=4不能判断直线L1∥L2.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC中,已知ABBCCA4 cm,点PQ分别从BC两点同时出发,其中点P沿BC向终点C运动,速度为1 cm/s;点Q沿CAAB向终点B运动,速度为2 cm/s,设它们运动的时间为x(s),当x__________BPQ是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,AD=AB,AD、BC的延长线相交于点E.
(1)求证:AD是半圆O的切线;
(2)连结CD,求证:∠A=2∠CDE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题3tan30°﹣|﹣2|+ +(﹣1)2017
(1)计算:3tan30°﹣|﹣2|+ +(﹣1)2017
(2)解方程: = ﹣2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=﹣ x+6的图象与坐标轴交于A、B点(如图),AE平分∠BAO,交x轴于点E.

(1)求点B的坐标;
(2)求直线AE的表达式;
(3)过点B作BF⊥AE,垂足为F,连接OF,试判断△OFB的形状,并求△OFB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.

(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x>0,现规定符号[x]表示大于或等于x的最小整数,如[0.5]=1,[4.3]=5,[6]=6……

(1)填空:[]=_____,[8.05]=______;若[x]=5,则x的取值范围是________.

(2)某市的出租车收费标准如下:3 km以内(包括3km)收费5元,超过3 km的,每超过1km,加收1.2元(不足1 km按1 km计算).设所行驶的路程为x(km),用含[x]的式子表示出当x>3时的乘车费用.

(3) 在(2)的条件下,某乘客乘出租车后付费18.2元,求该乘客所乘路程的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:

      

⑴ 当黑砖n=1时,白砖有_______块,当黑砖n=2时,白砖有________块,

当黑砖n=3时,白砖有_______块.

⑵ 第n个图案中,白色地砖共 块.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠CAB=∠DBA,添加下列某条件,未必能判定△ABC≌BAD的是( )

A. AC=BD B. AD=BC C. ∠l=∠2 D. ∠C=∠D

查看答案和解析>>

同步练习册答案