【题目】已知:平行四边形 ABCD的两边AB,AD的长是关于x的方程=0的两个实数根.
(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(2)若AB的长为2,那么平行四边形ABCD的周长是多少?
【答案】(1)当m=1时,四边形ABCD是菱形,菱形的边长是0.5;(2)5.
【解析】试题分析:综合考查了平行四边形及菱形的有关性质;利用解一元二次方程得到两种图形的边长是解决本题的关键.
(1)让根的判别式为0即可求得m,进而求得方程的根即为菱形的边长;
(2)求得m的值,进而代入原方程求得另一根,即易求得平行四边形的周长.
试题解析:解:(1)∵四边形ABCD是菱形,
∴AB=AD,
∴△=0,即m2-4(-)=0,
整理得:(m-1)2=0,
解得m=1,
当m=1时,原方程为x2-x+=0,
解得:x1=x2=0.5=,
故当m=1时,四边形ABCD是菱形,菱形的边长是;
(2)把AB=2代入原方程得,m=2.5,
把m=2.5代入原方程得x2-2.5x+1=0,解得x1=2,x2=0.5,
∴CABCD=2×(2+0.5)=5.
科目:初中数学 来源: 题型:
【题目】若(x+m)(x2-3x+n)的展开式中不含x2和x项,则m,n的值分别为( )
A. m=3,n=1 B. m=3,n=-9 C. m=3,n=9 D. m=-3,n=9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).
(1)求x为何值时,PQ⊥AC;
(2)设△PQD的面积为,当0<x<2时,求y与x的函数关系式;
(3)当0<x<2时,求证:AD平分△PQD的面积;
(4)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )
A. 函数有最小值
B. 对称轴是直线x=
C. 当x<,y随x的增大而减小
D. 当﹣1<x<2时,y>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各种说法中错误的是______(填序号)
①过一点有且只有一条直线与已知直线平行;②在同一平面内,两条不相交的线段是平行线段;③两条直线没有交点,则这两条直线平行;④在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com