精英家教网 > 初中数学 > 题目详情

【题目】已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.

(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:
(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.
(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PAPB=kAB.

【答案】
(1)PA=PB
(2)

解:把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下:

如图②,过C作CE⊥n于点E,连接PE,

∵三角形CED是直角三角形,点P为线段CD的中点,

∴PD=PE,

又∵点P为线段CD的中点,

∴PC=PD,

∴PC=PE;

∵PD=PE,

∴∠CDE=∠PEB,

∵直线m∥n,

∴∠CDE=∠PCA,

∴∠PCA=∠PEB,

又∵直线l⊥m,l⊥n,CE⊥m,CE⊥n,

∴l∥CE,

∴AC=BE,

在△PAC和△PBE中,

∴△PAC≌△PBE,

∴PA=PB.


(3)

解:如图③,延长AP交直线n于点F,作AE⊥BD于点E,

∵直线m∥n,

∴AP=PF,

∵∠APB=90°,

∴BP⊥AF,

又∵AP=PF,

∴BF=AB;

在△AEF和△BPF中,

∴△AEF∽△BPF,

∴AFBP=AEBF,

∵AF=2PA,AE=2k,BF=AB,

∴2PAPB=2k.AB,

∴PAPB=kAB.

(另外可以用面积证明:此时过P做m、n的垂线分别交于G、S两点,GP=k,∠PAm=∠PFE=∠PAB,AP为∠mAB的角平分线,角平分线上的P点到角两边的距离相等,所以h=k,由此即可解决问题,这种方法比较简单)


【解析】解:(1)∵l⊥n,
∴BC⊥BD,
∴三角形CBD是直角三角形,
又∵点P为线段CD的中点,
∴PA=PB.(2)
【考点精析】通过灵活运用相似三角形的性质和相似三角形的判定,掌握对应角相等,对应边成比例的两个三角形叫做相似三角形;相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y= 的一部分.请根据图中信息解答下列问题:

(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?
(2)求k的值;
(3)当x=18时,大棚内的温度约为多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知:矩形ABCD中,AC、BD是对角线,分别延长AD至E,延长CD至F,使得DE=AD,DF=CD.
(1)求证:四边形ACEF为菱形.
(2)如图2,过E作EG⊥AC的延长线于G,若AG=8,cos∠ECG= ,则AD= (直接填空)、

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是
(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.
(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,AB<BC,已知∠B=30°,AB=,将△ABC沿AC翻折至△AB′C,使点B′落在ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.

(1)【发现证明】
小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
(2)【类比引申】
如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 系时,仍有EF=BE+FD.
(3)【探究应用】
如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE,AC平分∠BAD.
求证:四边形ABCD为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.

(1)求y关于x的函数关系式(不要求写出x的取值范围);
(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案