精英家教网 > 初中数学 > 题目详情
已知在平面直角坐标系中,直线与x轴,y轴相交于A,B两点,直线与AB相交于C点,点D从点O出发,以每秒1个单位的速度沿x轴向右运动到点A,过点D作x轴的垂线,分别交直线和直线于P,Q两点(P点不与C点重合),以PQ为边向左作正△PQR,设正△PQR与△OBC重叠部分的面积为S(平方单位),点D的运动时间为t(秒)
(1)求点A,B,C的坐标; 
(2)若点M(2,3)正好在△PQR的某边上,求t的值;
(3)求S关于t的函数关系式,并写出相应t的取值范围,求出D在整个运动过程中s的最大值.

【答案】分析:(1)令y=0,可求A点的横坐标;令x=0,可求B点的横坐标;直线与直线联立可求C点坐标;
(2)本题只需考虑点M(2,3)正好在△PQR的某边上,求出t的取值即可.
(3)本题要分5种情况进行讨论.当0≤t≤时;当<t<3时;当t=3时;当3<t≤时;当≤t≤6时.讨论求出S的最大取值.
解答:解:(1)令y=0,可求A点的横坐标为:6;
故A点坐标为;(6,0),
令x=0,可求B点的纵坐标为:(0,6);
直线与直线联立可求C点坐标为:(3,3);

(2)当M在QP上或在RQ上以及RP上时,
分别求出:,t3=2;

(3)

因为S的最大值在范围内取到,,开口向下,对称轴直线x=9,函数的自变量部分图象在对称轴的左侧,S随t的增大而增大
故当t=6时,
点评:考查了一次函数综合题.本题中对于点的运动要分类进行讨论.分类讨论是初中数学重要的思想方法,难点是一要想到用讨论的方法进行求解.而是讨论界限要确定不要漏解和重复.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在平面直角坐标系中,点A,点B的坐标分别为A(0,0),B(0,4),点C在x轴上,且△ABC的面积为6,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在平面直角坐标系xOy中,二次函数y=x2-bx+c(b>0)的图象经过点A(-1,b),与y轴相交于点B,且∠ABO的余切值为3.
(1)求点B的坐标;
(2)求这个函数的解析式;
(3)如果这个函数图象的顶点为C,求证:∠ACB=∠ABO.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知在平面直角坐标系xOy中,⊙O的半径为1.
(1)当直线l:y=x+b与⊙O只有一个交点时,求b的值;
(2)当反比例函数y=
kx
的图象与⊙O有四个交点时,求k的取值范围;
(3)试探究当n取不同的数值时,二次函数y=x2+n的图象与⊙O交点个数情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在平面直角坐标系中,点A的坐标为(0,1),点B的坐标为(1,0),经过原点的精英家教网直线交线段AB于点C,过点C作OC的垂线与直线x=1相交于点P,设AC=t,点P的坐标为(1,y),
(1)求点C的坐标(用含t的代数式表示);
(2)求y与t之间的函数关系式和t的取值范围;
(3)当△PBC为等腰三角形时,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在平面直角坐标系中,平行四边形ABCD顶点A(0,0),C(10,4),直线y=ax-2a-1将平行四边形ABCD分成面积相等的两部分,求a的值.

查看答案和解析>>

同步练习册答案