精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AC=BC,D是BC上的一点,且满足∠BAD= ∠C,以AD为直径的⊙O与AB,AC分别相交于点E,F.

(1)求证:直线BC是⊙O的切线;
(2)连接EF,若tan∠AEF= ,AD=4,求BD的长.

【答案】
(1)证明:在△ABC中,

∵AC=BC,

∴∠CAB=∠B,

∵∠CAB+∠B+∠C=180°,

∴2∠B+∠C=180°,

∴∠B+ ∠C=90°,

∵∠BAD= ∠C,

∴∠B+∠BAD=90°,

∴∠ADB=90°,

∴AD⊥BC,

∵AD为⊙O直径,

∴直线BC是⊙O的切线;


(2)解:如图,连接DF,EF.

∵AD是⊙O的直径,

∴∠AFD=90°,

∵∠ADC=90°,

∴∠ADF+∠FDC=∠C+∠FDC=90°,

∴∠ADF=∠C,

∵∠ADF=∠AEF,tan∠AEF=

∴tan∠C=tan∠ADF=

在Rt△ACD中,设AD=4x,则CD=3x,

∴AC= =5x,

∴BC=5x,BD=2x,

∵AD=4,

∴x=1,

∴BD=2.


【解析】(1)首先依据等腰三角形的性质得到∠CAB=∠B,然后结合三角形的内角和定理可得到∠B+ 1 2 ∠C=90°,然后依据题目条件可证明∠B+∠BAD=90°,然后依据切线的判定定理进行证明即可;
(2)连接DF,EF,由圆周角定理可知DF⊥AC,然后依据同角的余角相等得到∠ADF=∠C,接下来,依据同弧所对的圆周角相等得到∠ADF=∠AEF,由tan∠AEF的值得到tan∠ADF的值,设出AD=4x、DC=3x,再由AC=BC,根据BC-CD表示出BD,再由AD的长,最后,利用勾股定理求出x的值,从而可确定出BD的长.
【考点精析】根据题目的已知条件,利用勾股定理的概念和切线的判定定理的相关知识可以得到问题的答案,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:

(1)此次抽样调查中,共调查了名学生;
(2)将图1、图2补充完整;
(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】福建省教育厅日前发布文件,从2019年开始,体育成绩将按一定的原始分计入中考总分。某校为适应新的中考要求,决定为体育组添置一批体育器材。学校准备在网上订购一批某品牌足球和跳绳,在查阅天猫网店后发现足球每个定价150元,跳绳每条定价30元.现有A、B两家网店均提供包邮服务,并提出了各自的优惠方案.

A网店:买一个足球送一条跳绳;

B网店:足球和跳绳都按定价的90%付款.

已知要购买足球40个,跳绳x条(x>40)

(1)若在A网店购买,需付款 元(用含x的代数式表示).

若在B网店购买,需付款 元(用含x的代数式表示).

(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?

(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,

并计算需付款多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.

请你根据上面提供的信息回答下列问题:
(1)扇形图中跳绳部分的扇形圆心角为度,该班共有学生人,训练后篮球定时定点投篮平均每个人的进球数是
(2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树状图的方法求恰好选中两名男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1ACBD是对角线。将DCB绕着点D顺时针旋转45°得到DGHHGAB于点E,连接DEAC于点F,连接FG。则下列结论:①四边形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.其中正确的结论是( )

A. ①②③④ B. ①②③ C. ①② D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD内有一点P满足AP=ABPB=PC,连接ACPD

求证:(1APB≌△DPC;(2BAP=2PAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图 C 是线段 AB 上一点 5BC=2AB,D AB 的中点,E CB 的中点,(1) DE=6,求 AB 的长;(2)求 AD:AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:
①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣ ;④ ≤n≤4.
其中正确的是( )

A.①②
B.③④
C.①③
D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点

的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系

如图所示,给出以下结论:a=8;b=92;c=123.其中正确的是【 】

A.①②③ B.仅有①② C.仅有①③ D.仅有②③

查看答案和解析>>

同步练习册答案