精英家教网 > 初中数学 > 题目详情

【题目】如图,的半径为4,过圆外一点的两条切线为切点,若,则阴影部分的面积是__________.(结果保留

【答案】

【解析】

连接OP,如图,根据切线的性质和切线长定理得到∠PAO=PBO=90°,∠APO=30°,则根据四边形内角和得到∠AOB=180°-APB=120°,再在RtPAO中利用含30度的直角三角形三边的关系得到,则,然后根据扇形面积公式,利用阴影部分的面积=S四边形AOBP-S扇形AOB进行计算.

连接OP,如图,

PAPB是⊙O的两条切线,

OAAPOBPBOP平分∠APB

∴∠PAO=PBO=90°,

∴∠AOB=180°-APB=180°-60°=120°,

RtPAO中,∵OA=4,∠APO=30°,

∴阴影部分的面积

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,渔船跟踪鱼群由西向东航行,到达A处时,测得小岛C位于它的北偏东53°方向,再航行后达到B处(),测得小岛C位于它的北偏东45°方向.小岛C的周围内有暗礁,如果渔船不改变航向继续向东航行,请你通过计算说明渔船有无触礁的危险?

(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知矩形的三个顶点.抛物线两点.

1)直接写出点的坐标,并求出抛物线的解析式;

2)动点从点出发.沿线段向终点运动,同时点从点出发,沿线段向终点运动.速度均为每秒1个单位长度,运动时间为秒.过点于点

①过点于点,交抛物线于点.当为何值时,线段最长?

②连接.在点运动的过程中,判断有几个时刻使得是等腰三角形?请直接写出相应的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,ABAC,∠BAC90°,点D在射线BC上(不与点B、点C重合),将线段ADA逆时针旋转90°得到线段AE,作射线BA与射线CE,两射线交于点F

1)若点D在线段BC上,如图1,请直接写出CDEF的关系.

2)若点D在线段BC的延长线上,如图2,(1)中的结论还成立吗?请说明理由.

3)在(2)的条件下,连接DEGDE的中点,连接GF,若tanAECAB,求GF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的弦,点C为半径OA的中点,过点CCD⊥OA交弦AB于点E,连接BD,且DE=DB

1)判断BD与⊙O的位置关系,并说明理由;

2)若CD=15BE=10tanA=,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家家电下乡政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.

1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出yx之间的函数表达式;(不要求写自变量的取值范围)

2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?

3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大邑县某汽车出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨25%.据统计,淡季该公司平均每天有10辆货车未出租,日租金总收入为3200元;旺季所有的货车每天能全部租出,日租金总收入为6000元.

1)求该出租公司这批对外出租的货车共有多少辆?

2)经市场调查发现,在旺季如果每辆货车的日租金每上涨20元,每天租出去的货车就会减少1辆,不考虑其它因素,该出租公司的日租金总收入最高是多少元?当日租金总收入最高时,每天出租货车多少辆?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.

(1)求证:四边形BEDF是平行四边形;

(2)当四边形BEDF是菱形时,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两位老师同住一小区,该小区与学校相距.甲从小区步行去学校,出发分钟后乙再出发,乙从小区先骑公共自行车,骑行若干米到达还车点后,立即步行走到学校.已知乙骑车的速度为/分,甲步行的速度比乙步行的速度每分钟快.设甲步行的时间为(分),图1中线段与折线分别表示甲、乙离小区的路程(米)与甲步行时间(分)的函数关系的图象;图2表示甲、乙两人之间的距离(米)与甲步行时间 (分)的函数关系的图象(不完整),根据图1和图2中所给的信息,解答下列问题:

1)求甲步行的速度和乙出发时甲离开小区的路程;

2)求直线的解析式;

3)在图2中,画出当时,关于的函数的大致图象.

查看答案和解析>>

同步练习册答案