精英家教网 > 初中数学 > 题目详情

【题目】如图,直线l1的函数解析式为y=﹣2x+4,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.

(1)求直线l2的函数解析式;

(2)求ADC的面积;

(3)在直线l2上是否存在点P,使得ADP面积是ADC面积的2倍?如果存在,请求出P坐标;如果不存在,请说明理由.

【答案】(1)直线l2的函数解析式为y=x﹣5(2)3(3)在直线l2上存在点P(1,﹣4)或(9,4),使得ADP面积是ADC面积的2倍.

【解析】试题分析:(1)根据A、B的坐标,设直线l2的函数解析式为y=kx+b,利用待定系数发求出函数l2的解析式;

(2)由函数的解析式联立方程组,求解方程组,得到C点坐标,令y=-2x+4=0,求出D点坐标,然后求解三角形的面积;

(3)假设存在,根据两三角形面积间的关系|yP|=2|yC|,=4,再根据一次函数图像上点的坐标特征即可求出P点的坐标.

试题解析:(1)设直线l2的函数解析式为y=kx+b,

将A(5,0)、B(4,﹣1)代入y=kx+b,

,解得:

直线l2的函数解析式为y=x﹣5.

(2)联立两直线解析式成方程组,

,解得:

点C的坐标为(3,﹣2).

当y=﹣2x+4=0时,x=2,

点D的坐标为(2,0).

SADC=AD|yC|=×(5﹣2)×2=3.

(3)假设存在.

∵△ADP面积是ADC面积的2倍,

∴|yP|=2|yC|=4,

当y=x﹣5=﹣4时,x=1,

此时点P的坐标为(1,﹣4);

当y=x﹣5=4时,x=9,

此时点P的坐标为(9,4).

综上所述:在直线l2上存在点P(1,﹣4)或(9,4),使得ADP面积是ADC面积的2倍.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BCAC,过点C作直线CDAB于点D,点EAB上一点,直线CE交⊙O于点F,连接BF与直线CD延长线交于点G.求证:BC2BG·BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,DE内两点,AD平分,∠EBC=E=60°,若DE=2,则BC的长为(

A.4B.6C.8D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图的正方形网格中,每一个小正方形的边长为1.格点三角形(顶点是网格线交点的三角形)的顶点的坐标分别是

(1)请在图中的网格平面内建立平面直角坐标系;

(2)请画出关于轴对称的

(3)请在轴上求作一点,使的周长最小,并写出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,按如下步骤作图:

分别以为圆心,以大于的长为半径在两边作弧,交于两点

作直线,分别交于点

于点,连接

求证:四边形是菱形;

,求四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l:y=x+1x轴于点B,交y轴于点A,过点AAB1ABx轴于点B1,过点B1B1A1x轴交直线l于点A2依次作下去,则点Bn的横坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着几何部分的学习,小鹏对几何产生了浓厚的兴趣,他最喜欢利用手中的工具画图了如图,作一个,以O为圆心任意长为半径画弧分别交OAOB于点C和点D,将一副三角板如图所示摆放,两个直角三角板的直角顶点分别落在点C和点D,直角边中分别有一边与角的两边重合,另两条直角边相交于点P,连接小鹏通过观察和推理,得出结论:OP平分

你同意小鹏的观点吗?如果你同意小鹏的观点,试结合题意写出已知和求证,并证明.

已知:中,____________________________________

求证:OP平分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=AC,∠BAC=120°AC的垂直平分线交BC于点D,垂足为E,若DE=2cm,则BD的长为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象如图所示.

(1)求这个二次函数的表达式;

(2)将该二次函数图象向上平移   个单位长度后恰好过点(﹣2,0);

(3)观察图象,当﹣2<x<1时,y的取值范围为   

查看答案和解析>>

同步练习册答案