精英家教网 > 初中数学 > 题目详情

【题目】如图(1),已知正方形ABCD的对角线ACBD相交于点OEAC上一点,连接EB,过点AAM⊥BE,垂足为MAMBD于点F

(1)求证:OEOF

(2)如图(2),若点EAC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其他条件不变,则结论“OEOF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.

【答案】(1)证明:四边形ABCD是正方形,

∴∠BOE∠AOF90°OBOA

∵AM⊥BE∴∠MEA∠MAE90°∠AFO∠MAE

∴∠MEA∠AFO∴Rt△BOE≌Rt△AOF∴OEOF

(2)OEOF成立.

证明:四边形ABCD是正方形,

∴∠BOE∠AOF90°OBOA

∵AM⊥BE∴∠F∠MBF90°∠E∠OBE

∵∠MBF∠OBE∴∠F∠E

∴Rt△BOE≌Rt△AOF∴OEOF

【解析】试题分析:(1)根据正方形的性质对角线垂直且平分,得到OB=OA,又因为AM⊥BE,所以∠MEA+∠MAE=90°=∠AFO+∠MAE,从而求证出Rt△BOE≌Rt△AOF,得到OE=OF.(2)根据第一步得到的结果以及正方形的性质得到OB=OA,再根据已知条件求证出Rt△BOE≌Rt△AOF,得到OE=OF

试题解析:(1)证明:四边形ABCD是正方形.

∴∠BOE=∠AOF=90°OB=OA

∵AM⊥BE

∴∠MEA+∠MAE=90°=∠AFO+∠MAE

∴∠MEA=∠AFO

∴Rt△BOE≌Rt△AOF

∴OE=OF

解:OE=OF成立.

证明:四边形ABCD是正方形,

∴∠BOE=∠AOF=90°OB=OA

∵AM⊥BE

∴∠F+∠MBF=90°

∠E+∠OBE=90°

∵∠MBF=∠OBE

∴∠F=∠E

∴Rt△BOE≌Rt△AOF

∴OE=OF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在数轴上,点A、B表示的数分别是有理数a,b.

(1)若点A在原点的左侧,点B在原点的右侧,且|a|=|b|,则ab的关系是   ,用式子表示为   

(2)若a=﹣5,b=1

①分别写出a,b的相反数;

②求|a|﹣|b|的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,高AD=12cm,BC的长为(

A. 14 cm B. 4 cm C. 14cm4 cm D. 以上都不对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)计算:﹣ +20160+|﹣3|+4cos30°
(2)解方程:x2+2x﹣8=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙两艘轮船同时从港口O出发,甲轮船以20海里/时的速度向南偏东45°方向航行,乙轮船向南偏西45°方向航行.已知它们离开港口O两小时后,两艘轮船相距50海里,求乙轮船平均每小时航行多少海里?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y= x与双曲线y= (k>0)交于A、B两点,点B的坐标为(﹣4,﹣2),C为双曲线y= (k>0)上一点,且在第一象限内,若△AOC的面积为6,则点C的坐标为(
A.(2,4)
B.(1,8)
C.(2,4)或(1,8)
D.(2,4)或(8,1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形网格(边长为1的小正方形组成的网格纸,正方形的顶点称为格点)是我们在初中阶段常用的工具,利用它可以解决很多问题.

(1)如图①中,△ABC是格点三角形(三个顶点为格点),则它的面积为

(2)如图②,在4×4网格中作出以A为顶点,且面积最大的格点正方形(四个顶点均为格点);

(3)人们发现,记格点多边形(顶点均为格点)内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为Smanb-1,其中mn为常数.试确定mn的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)连接GD,求证:△ADG≌△ABE;
(2)连接FC,观察并猜测∠FCN的度数,并说明理由;
(3)如图(2),将图(1)中正方形ABCD改为矩形ABCD,AB=a,BC=b(a、b为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含a、b的代数式表示tan∠FCN的值;若∠FCN的大小发生改变,请举例说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,BDABC的中线,CEBD于点E,AFBD,BD的延长线于点F.

(1)试探索BE,BFBD三者之间的数量关系并加以证明;

(2)连接AE,CF,求证:AECF.

查看答案和解析>>

同步练习册答案