【题目】如图,Rt△AOB的直角边OA在x轴上,OA=2,AB=1,将Rt△AOB绕点O逆时针旋转90°得到Rt△COD,抛物线经过B、D两点.
(1)求二次函数的解析式;
(2)连接BD,点P是抛物线上一点,直线OP把△BOD的周长分成相等的两部分,求点P的坐标.
【答案】(1);(2)(1,3)或(-4,-12).
【解析】试题(1)由旋转性质可得CD=AB=1、OA=OC=2,从而得出点B、D坐标,代入解析式即可得出答案;
(2)由直线OP把△BOD的周长分成相等的两部分且OB=OD,知DQ=BQ,即点Q为BD的中点,从而得出点Q坐标,求得直线OP解析式,代入抛物线解析式可得点P坐标.
试题解析:解:(1)∵Rt△AOB绕点O逆时针旋转90°得到Rt△COD,∴CD=AB=1,OA=OC=2,则点B(2,1)、D(﹣1,2),代入解析式,得: ,解得:,∴二次函数的解析式为;
(2)如图,∵直线OP把△BOD的周长分成相等的两部分,且OB=OD,∴DQ=BQ,即点Q为BD的中点,∴点Q坐标为(,),设直线OP解析式为y=kx,将点Q坐标代入,得:k=,解得:k=3,∴直线OP的解析式为y=3x,代入,得:,解得:x=1或x=﹣4.当x=1时,y=3,当x=-4时,y=-12,∴点P坐标为(1,3)或(-4,-12).
科目:初中数学 来源: 题型:
【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为192m2, 求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,以点P(﹣3,4)为圆心的⊙P与y轴相切,A是x轴上一动点,过A点的直线与⊙P相切于点B,以AB为边作正方形ABCD,则正方形ABCD面积的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边△ABC中,点D为AC上一点,连接BD,直线l与AB,BD,BC分别相交于点E,P,F,且∠BPF=60°.
(1)如图(1),写出图中所有与△BPF相似的三角形,并选择其中一对给予证明;
(2)若直线l向右平移到图(2),图(3)的位置时(其它条件不变),(1)中的结论是否仍然成立?若成立,请写出来(不需证明),若不成立,请说明理由;
(3)探究:如图(1),当BD满足什么条件时(其它条件不变),EF=BF?请写出探究结果,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=﹣(x﹣1)2+m(m是常数),点A(x1,y1),B(x2,y2)在抛物线上,若x1<1<x2,x1+x2>2,则下列大小比较正确的是( )
A. m>y1>y2 B. m>y2>y1 C. y1>y2>m D. y2>y1>m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正比例函数与反比例函数的图象相交于AB、两点,分别以AB、两点为圆心,画与x轴相切的两个圆,若点A的坐标为(2,1),则图中两个阴影部分面积的和是( )
A. B. C. π D. 4π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,反比例函数y=的图象与一次函数y=ax+b的图象交于点A(1,4),点B(m,﹣1).
(1)求一次函数和反比例函数的解析式;
(2)求△OAB的面积;
(3)直接写出不等式ax+b≥的解集是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班“数学兴趣小组”对函数y=+x的图象与性质进行了探究,探究过程如下,请补充完整.
(1)函数y=+x的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 2 | 3 | 4 | 5 | … | ||||
y | … | ﹣ | ﹣ | ﹣ | ﹣1 | ﹣ | ﹣ | 3 | m |
| … |
求m的值;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其它性质(一条即可): .
(5)小明发现,①该函数的图象关于点( , )成中心对称;
②该函数的图象与一条垂直于x轴的直线无交点,则这条直线为 ;
③直线y=m与该函数的图象无交点,则m的取值范围为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com