精英家教网 > 初中数学 > 题目详情

如图在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.
求证:四边形BDEF是菱形.

证明:∵D、E、F分别是BC、AC、AB边上的中点,
∴BF=AB,BD=BC,EF∥BC,DE∥AB,
∵AB=BC,
∴BF=BD,四边形BDEF是平行四边形,
∴四边形BDEF是菱形.
分析:根据三角形的中位线定理推出BF=AB,BD=BC,EF∥BC,DE∥AB,得到平行四边形BDEF,和BF=BD,即可推出答案.
点评:本题主要考查对菱形的判定,平行四边形的判定,三角形的中位线等知识点的理解和掌握,能求出四边形是平行四边形是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、如图在△ABC中,∠ACB=90°,CD是边AB上的高.那么图中与∠A相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图在△ABC中,∠ABC=50°,∠ACB=75°,点O是内心,则∠BOC的度数为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在△ABC中,∠A=45°,tanB=3,BC=
10
,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG平分∠CDE,DC=AE,
求证:CG=EG.
证明:∵AD⊥BC
∴∠ADB=90°
∵CE是AB边上的中线
∴E是AB的中点
∴DE=
1
2
AB
1
2
AB
(直角三角形斜边上的中线等于斜边的一半)
又∵AE=
1
2
AB
∴AE=DE
∵AE=CD
∴DE=CD
即△DCE是
等腰
等腰
三角形
∵DG平分∠CDE
∴CG=EG(
等腰三角形三线合一
等腰三角形三线合一

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在△ABC中,AD垂直平分BC,AD=8,BC=10,E、F是AD上的两点,则图中阴影部分的面积是
20
20

查看答案和解析>>

同步练习册答案