精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.

(1)求一次函数y=kx+b和y=的表达式;

(2)已知点C在x轴上,且△ABC的面积是8,求此时点C的坐标;

(3)反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积是_________.(直接写出答案)

【答案】(1);(2)C的坐标为;(3)27.

【解析】试题分析:(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出a值,从而得出反比例函数解析式;由勾股定理得出OA的长度从而得出点B的坐标,由点A、B的坐标利用待定系数法即可求出直线AB的解析式;
(2)设点C的坐标为(m,0),令直线ABx轴的交点为D,根据三角形的面积公式结合ABC的面积是8,可得出关于m的含绝对值符号的一元一次方程,解方程即可得出m值,从而得出点C的坐标;
(3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,根据反比例函数解析式以及平移的性质找出点E、F、M、N的坐标,根据EMFN,且EM=FN,可得出四边形EMNF为平行四边形,再根据平行四边形的面积公式求出平行四边形EMNF的面积S,根据平移的性质即可得出C1平移至C2处所扫过的面积正好为S.

试题解析:

(1)∵点A(4,3)在反比例函数y=的图象上,

a=4×3=12,

∴反比例函数解析式为y=

OA==5,OA=OB,点By轴负半轴上,

∴点B(0,﹣5).

把点A(4,3)、B(0,﹣5)代入y=kx+b中,

得: ,解得:

∴一次函数的解析式为y=2x﹣5.

(2)设点C的坐标为(m,0),令直线ABx轴的交点为D,如图1所示.

y=2x﹣5y=0,则x=

D(,0),

SABC=CD(yA﹣yB)=|m﹣|×[3﹣(﹣5)]=8,

解得:m=m=

故当ABC的面积是8时,点C的坐标为(,0)或(,0).

(3)设点E的横坐标为1,点F的横坐标为6,点M、N分别对应点E、F,如图2所示.

y=x=1,则y=12,

E(1,12),;

y=x=4,则y=3,

F(4,3),

EMFN,且EM=FN,

∴四边形EMNF为平行四边形,

S=EM(yE﹣yF)=3×(12﹣3)=27.

C1平移至C2处所扫过的面积正好为平行四边形EMNF的面积.

故答案为:27.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明想要做以下的一个探究:小明准备了一个长方体的无盖容器和A,B两种型号的钢球若干. 先往容器里加入一定量的水,如图,水高度为30mm,水足以淹没所有的钢球.探究一:小明做了两次实验,先放入3A型号钢球,水面的高度涨到36mm;把3A型号钢球捞出,再放入2B型号钢球,水面的高度恰好也涨到36mm.由此可知A型号与B型号钢球的体积比为____________

探究二:小明把之前的钢球全部捞出,然后再放入A型号与B型号钢球共10个后,水面高度涨到57mm,问放入水中的A型号与B型号钢球各几个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,A01),B50)将线段AB向上平移到DC,如图1CDy轴于点ED点坐标为(﹣2a

1)直接写出点C坐标(C的纵坐标用a表示);

2)若四边形ABCD的面积为18,求a的值;

3)如图2FAE延长线上一点,HOB延长线上一点,EP平分∠CEFBP平分∠ABH,求∠EPB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大熊山某农家乐为了抓住五一小长假的商机,决定购进AB两种纪念品。若购进A种纪念品4件,B种纪念品3件,需要550元;若购进A种纪念品8件,B种纪念品5件,需要1050元。

1)求购进AB两种纪念品每件各需多少元。

2)若该农家乐决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该农家乐共有几种进货方案。

3)若销售每件A种纪念品可获利润30元,每件B种纪念品可获利润20元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,点E为BC边的中点,点B′与点B关于AE对称,B′B与AE交于点F,连接AB′,DB′,FC.下列结论:①AB′=AD;②△FCB′为等腰直角三角形;③∠ADB′=75°;④∠CB′D=135°.其中正确的是( )

A. ①② B. ①②④ C. ③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A,B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7, 3),根据下列要求作图(保留作图痕迹,不用写作法).

(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A,B两校的距离相等?如果有,请用尺规作图找出该点;

(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,P点的坐标为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)在ABC中,∠ACB=90°AC=BC,直线MN经过点C,且ADMN于点DBEMN于点E.求证:

1ADC≌△CEB

2DE=AD+BE

3)当直线MN绕点C旋转到图(2)的位置时,DEADBE又怎样的关系?并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】O为直线AB上一点,在直线AB上侧任作一个∠COD,使∠COD90°.

1)如图1,过点O作射线OE,使OE是∠AOD的角平分线,求证:∠BOD2COE

2)如图2,过点O作射线OE,使OC是∠AOE的角平分线,另作射线OF,使OF是∠COD的平分线,若∠EOC3EOF,求∠AOE的度数.

查看答案和解析>>

同步练习册答案