精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC是一块直角三角板,且∠C90°,∠A30°,现将圆心为点O的圆形纸片放置在三角板内部,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC7+2,圆形纸片的半径为2,求圆心O运动的路径长为_____

【答案】15+5

【解析】

添加如图所示辅助线,圆心O的运动路径长为,先求出ABC的三边长度,得出其周长,证四边形OEDO1、四边形O1O2HG、四边形OO2IF均为矩形、四边形OECF为正方形,得出∠OO1O260°=∠ABC、∠O1OO290°,从而知OO1O2∽△CBA,利用相似三角形的性质即可得出答案.

如图,圆心O的运动路径长为

过点O1O1DBCO1FACO1GAB,垂足分别为点DFG

过点OOEBC,垂足为点E

过点O2O2HABO2IAC,垂足分别为点HI

RtABC中,∠ACB90°、∠A30°

AC7+6AB2BC14+4,∠ABC60°

CABC13+27

O1DBCO1GAB

DG为切点,

BDBG

RtO1BDRtO1BG中,

∴△O1BD≌△O1BGHL),

∴∠O1BG=∠O1BD30°

RtO1BD中,∠O1DB90°,∠O1BD30°

BD2

OO17+2225

O1DOE2O1DBCOEBC

O1DOE,且O1DOE

∴四边形OEDO1为平行四边形,

∵∠OED90°

∴四边形OEDO1为矩形,

同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,

OEOF

∴四边形OECF为正方形,

∵∠O1GH=∠CDO190°,∠ABC60°

∴∠GO1D120°

又∵∠FO1D=∠O2O1G90°

∴∠OO1O2360°90°90°60°=∠ABC

同理,∠O1OO290°

∴△OO1O2∽△CBA

,即

COO1O215+5

即圆心O运动的路径长为15+5.

故答案为15+5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5x5.5,另外每天还需支付其他各项费用80元.

销售单价x(元)

3.5

5.5

销售量y(袋)

280

120

1)请直接写出yx之间的函数关系式;

2)如果每天获得160元的利润,销售单价为多少元?

3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数的图像与轴的一个交点为 ,与轴的交点为,过的直线为.

1)求二次函数的解析式及点的坐标;

2)直接写出满足时,的取值

3)在两坐标轴上是否存在点,使得是以为底边的等腰三角形?若存在,求出的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线交x轴于AB两点A在点B的左边,交y轴于点C,直线经过点Cx轴交于点D,抛物线的顶点坐标为

请你直接写出CD的长及抛物线的函数关系式;

求点B到直线CD的距离;

若点P是抛物线位于第一象限部分上的一个动点,则当点P运动至何处时,恰好使?请你求出此时的P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yx2mx﹣(m+1)与x轴负半轴交于点Ax10),与x轴正半轴交于点Bx20)(OAOB),与y轴交于点C,且满足x12+x22x1x213

1)求抛物线的解析式;

2)以点B为直角顶点,BC为直角边作RtBCDCD交抛物线于第四象限的点E,若ECED,求点E的坐标;

3)在抛物线上是否存在点Q,使得SACQ2SAOC?若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,弦ABCD相交于点E,点D上,连接CO,并延长CO交线段AB于点F,连接OAOB,且OAtanOBA

1)求证:∠OBA=∠OCD

2)当AOF是直角三角形时,求EF的长;

3)是否存在点F,使得SCEF4SBOF,若存在,请求EF的长,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】美丽的甬江宛如一条玉带穿城而过,数学课外实践活动中,小林在甬江岸边的A, B两点处,利用测角仪分别对西岸的一观景亭D进行测量.如图,测得∠DAC=45°,DBC=65°,若AB=114米,求观景亭D到甬江岸边AC的距离约为多少米?

(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+ca≠0)的图象如图,有下列6个结论:

abc<0;

bac

4a+2b+c>0;

2c<3b

a+bmam+b),(m≠1的实数)

2a+b+c>0,其中正确的结论的有_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场购进一种单价为30元的商品,如果以单价55元售出,那么每天可卖出200个,根据销售经验,每降价1元,每天可多卖出10个,假设每个降价x(元),每天销售y(个),每天获得的利润W(元).

1)写出yx的函数关系式;

2)求出Wx的函数关系式(不必写出x的取值范围);

3)降价多少元时,每天获得的利润最大?

查看答案和解析>>

同步练习册答案