精英家教网 > 初中数学 > 题目详情

如图,已知△ABC、△DEF均为正三角形,D、E分别在AB、BC上.
(1)图中有几组相似三角形并把它们表示出来;
(2)请找一个与△DBE相似的三角形并说明理由.

(1)解:相似三角形有:△ABC∽△DEF,△ADG∽△BDE∽△CEH∽△FGH,
理由是:∵△ABC和△DEF是等边三角形,
∴∠A=∠FDE=60°,∠B=∠DEF=60°,
∴△ABC∽△DEF;
∵△ABC和△DEF是等边三角形,
∴∠A=∠B=60°,∠FDE=60°,
∴∠ADG+∠BDE=180°-60°=120°,∠ADG+∠AGD=180°-60°=120°,
∴∠AGD=∠BDE,
∵∠A=∠B,
∴△ADG∽△BED;
同理△BDE∽△CEH,△BDE∽△FGH;

(2)解:△ADG∽△BED,
理由是:∵△ABC和△DEF是等边三角形,
∴∠A=∠B=60°,∠FDE=60°,
∴∠ADG+∠BDE=180°-60°=120°,∠ADG+∠AGD=180°-60°=120°,
∴∠AGD=∠BDE,
∵∠A=∠B,
∴△ADG∽△BED.
分析:(1)根据相似三角形的判定方法(有两角分别相等的两三角形相似)判断即可;
(2)根据等边三角形性质求出∠A=∠B=60°,∠FDE=60°,求出∠AGD=∠BDE,根据三角形的判定证出即可.
点评:本题考查了相似三角形的判定,三角形的内角和定理,等边三角形的性质的应用,主要考查学生的推理能力,题目比较典型,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中作出△ABC关于直线x=-1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;
(2)求四边形ABED的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.
(1)请说出AD=BE的理由;
(2)试说出△BCH≌△ACG的理由;
(3)试猜想:△CGH是什么特殊的三角形,并加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.
(1)求证:△ACF∽△BEC;
(2)设△ABC的面积为S,求证:AF•BE=2S;
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、(1)已知线段a,h,用直尺和圆规作等腰三角形ABC,底边BC=a,BC边上的高为h(要求尺规作图,不写作法和证明)
(2)如图,已知△ABC,请作出△ABC关于X轴对称的图形.并写出A、B、C关于X轴对称的点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知△ABC是锐角三角形,且∠A=50°,高BE、CF相交于点O,求∠BOC的度数.

查看答案和解析>>

同步练习册答案