精英家教网 > 初中数学 > 题目详情
在某市开展的环境创优活动中,某居民小区要在一块靠墙(墙长15米)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成,若设花园与墙平行的一边长为x(m),花园的面积为y(m2)。
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)满足条件的花园面积能达到200m2吗?若能,求出此时x的值,若不能,说明理由:
(3)根据(1)中求得的函数关系式,判断当x取何值时,花园的面积最大?最大面积是多少?
(1)y=﹣x2+20x(0<x≤15);
(2)花园面积不能达到200m2,理由见解析;
(3)当x=15时,花园的面积最大,最大面积为187.5m2

试题分析:(1)设花园靠墙的一边长为x(m),另一边长为,用面积公式表示矩形面积;
(2)就是已知y=200,解一元二次方程,但要注意检验结果是否符合题意;即结果应该是0<x≤15.
(3)由于0<x≤15,对称轴x=20,即顶点不在范围内,y随x的增大而增大.∴x=15时,y有最大值.
试题解析:(1)根据题意得:
即y=﹣x2+20x(0<x≤15);
(2)当y=200时,即﹣x2+20x=200,
解得x1=x2=20>15,
∴花园面积不能达到200m2
(3)∵y=﹣x2+20x的图象是开口向下的抛物线,对称轴为x=20,
∴当0<x≤15时,y随x的增大而增大.
∴x=15时,y有最大值,
y最大值=﹣×152+20×15=187.5m2
即当x=15时,花园的面积最大,最大面积为187.5m2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

抛物线y=-与y轴交于(0,3),
⑴求m的值;
⑵求抛物线与x轴的交点坐标及顶点坐标;
⑶当x取何值时,抛物线在x轴上方?
⑷当x取何值时,y随x的增大而增大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

高盛超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.
(1)设每个小家电定价增加元,每售出一个小家电可获得的利润是多少元?(用含的代数式表示)
(2)当定价增加多少元时,商店获得利润6000元 ?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数图象顶点为C(1,0),直线与该二次函数交于A,B两点,其中A点(3,4),B点在y轴上.

(1)求此二次函数的解析式;
(2)P为线段AB上一动点(不与A,B重合),过点P作y轴的平行线与二次函数交于点E.设线段PE长为h,点P横坐标为x,求h与x之间的函数关系式;
(3)D为线段AB与二次函数对称轴的交点,在AB上是否存在一点P,使四边形DCEP为平行四边形?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,用长为6m的铝合金条制成“日”字形窗框,若窗框的宽为xm,窗户的透光面积为ym2(铝合金条的宽度不计).

(1)求出y与x的函数关系式;
(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线过点(2,-2)和(-1,10),与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的解析式.
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

两个正方形的周长和是10,如果其中一个正方形的边长为,则这两个正方形的面积的和S关于的函数关系式为
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象可能是(   )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(  )
A.a>0B.3是方程ax²+bx+c=0的一个根
C.a+b+c=0D.当x<1时,y随x的增大而减小

查看答案和解析>>

同步练习册答案