【题目】如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,则∠AEO= 度.
【答案】30
【解析】解:∵四边形ABCD是矩形, ∴AD∥BC,∠ABC=∠BAD=90°,AC=BD,OB= BD,OC= AC,
∴OB=OC,
∴∠OBC=∠OCB,
∵∠BOC=∠AOD=120°,
∴∠OBC=30°,
∵AE平分∠BAD,
∴∠BAE=∠EAD=45°,
∴∠AEB=∠EAD=∠BAE=45°,
∴AB=BE,
∵∠AOD=120°,
∴∠AOB=60°,
∴AB=OA=OB,
∴OB=BE,
∴∠BOE=∠BEO,
∴∠OEB=75°,
∴∠AEO=∠OEB﹣∠AEB=75°﹣45°=30°.
所以答案是:30.
【考点精析】利用矩形的性质对题目进行判断即可得到答案,需要熟知矩形的四个角都是直角,矩形的对角线相等.
科目:初中数学 来源: 题型:
【题目】小王计划用100元钱买乒乓球,所购买球的个数为W个,每个球的单价为n元,其中( )
A. 100是常量,W,n是变量 B. 100,W是常量,n是变量
C. 100,n是常量,W是变量 D. 无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.
(1)求∠DOF的度数;
(2)试说明OD平分∠AOG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在课外学习时遇到这样一个问题:
定义:如果二次函数是常数与是常数)满足,则称这两个函数互为“旋转函数”.
求函数的 “旋转函数”.
小明是这样思考的:由函数可知a1=-1,b1=3,c1=-3,根据a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能确定这个函数的“旋转函数”.
请参考小明的方法解决下面的问题:
(1)写出函数的“旋转函数”;
(2)若函数与互为“旋转函数”,求(m+n)2017的值;
(3)已知函数的图象与轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试证明经过点A1、B1、C1的二次函数与函数互为“旋转函数”.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若93号汽油的售价为6.2元/升,则付款金额y(元)随加油数量x(升)的变化而变化,其中,_________是自变量,_____是_____的函数,其解析式为_____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com