【题目】如图,在8×8的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)
(2)是 三角形;
(3)若有一格点P到点A、B的距离相等(PA=PB),则网格中满足条件的点P共有 个;
(4)在直线上找一点Q,使QB+QC的值最小。
【答案】(1)答案见解析;(2)等腰直角;(3)4;(4)答案见解析.
【解析】
(1)分别作出点A、B、C关于直线l的对称点,再顺次连接可得;
(2)根据网格,求出AB,AC,BC的长度,然后再判断即可;
(3)作线段AB的垂直平分线,即可得到答案;
(4)连接,与相交于一点,这点为点Q,由垂直平分线性质,QC=,则得到QB+QC的最小值.
解:(1)如图所示:△A1B1C1为所求.
(2)根据题意,可知,
,,,
∴,
∵,
∴是等腰直角三角形;
故答案为:等腰直角.
(3)如图,作线段AB的垂直平分线,与网格的顶点相交即为点P;
由图可知,使PA=PB的点P一共有4个,
故答案为:4.
(4)如图,连接与相交于点Q,则QB+QC取到最小值;
∵垂直平分,
∴,
∴QB+QC=QB+,
∴最小值为:;
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
(1)出发2秒后,求PQ的长.
(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?
(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且速度都为1cm/s,连接AQ、CP交于点M,下面四个结论:①BP=CM;②△ABQ≌△CAP;③∠CMQ的度数不变,始终等于60°;④当第秒或第秒时,△PBQ为直角三角形,正确的有几个 ( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x,y的方程组 ,其中-3≤a≤1,给出下列结论:①当a=1时,方程组的解也是方程x+y=4-a的解;
②当a=-2时,x、y的值互为相反数;
③若x<1,则1≤y≤4;
④ 是方程组的解,其中正确的结论有
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:BD为的直径,O为圆心,点A为圆上一点,过点B作的切线交DA的延长线于点F,点C为上一点,且,连接BC交AD于点E,连接AC.
如图1,求证:;
如图2,点H为内部一点,连接OH,CH若时,求证:;
在的条件下,若,的半径为10,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】濠河成功晋升国家级旅游景区,为了保护这条美丽的护城河,南通市政府投入大量资金治理濠河污染,在城郊建立了一个大型污水处理厂,设库池中有待处理的污水吨,又从城区流入库池的污水按每小时吨的固定流量增加,如果同时开动台机组需小时刚好处理完污水,同时开动台机组需小时刚好处理完污水,若需要小时内将污水处理完毕,那么至少要同时开动多少台机组?(每台机组每小时处理污水量不变)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵两次共花费940元两次购进的A、B两种花草价格均分别相同.
、B两种花草每棵的价格分别是多少元?
若再次购买A、B两种花草共12棵、B两种花草价格不变,且A种花草的数量不少于B种花草的数量的4倍,请你给出一种费用最省的方案,并求出该方案所需费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数为常数.
求该二次函数图象与x轴的交点坐标;
求该二次函数图象的顶点P的坐标;
如将该函数的图象向左平移3个单位,再向上平移1个单位,得到函数的图象,直接写出m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com