【题目】已知抛物线C1:y=ax2+bx+(a≠0)经过点A(-1,0)和B(3,0).
(1)求抛物线C1的解析式,并写出其顶点C的坐标;
(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标;
(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:
①tan∠ENM的值如何变化?请说明理由;
②点M到达点C时,直接写出点P经过的路线长.
【答案】(1),顶点C(1,2);(2)F(﹣3,﹣6);(3)①tan∠ENM=2,是定值,不发生变化;②.
【解析】试题分析:(1)根据待定系数法即可求得解析式,把解析式化成顶点式即可求得顶点坐标;
(2)根据A、C的坐标求得直线AC的解析式为y=x+1,根据题意求得EF=4,求得EF∥y轴,设F(m,-m2+m+),则E(m,m+1),从而得出(m+1)-(-m2+m+)=4,解方程即可求得F的坐标;
(3)①先求得四边形DFBC是矩形,作EG⊥AC,交BF于G,然后根据△EGN∽△EMC,对应边成比例即可求得tan∠ENM==2;
②根据勾股定理和三角形相似求得EN=,然后根据三角形中位线定理即可求得.
试题解析:(1)∵抛物线C1:y=ax2+bx+(a≠0)经过点A(-1,0)和B(3,0),
∴解得,
∴抛物线C1的解析式为y=-x2+x+,
∵y=-x2+x+=-(x-1)2+2,
∴顶点C的坐标为(1,2);
(2)如图1,作CH⊥x轴于H,
∵A(-1,0),C(1,2),
∴AH=CH=2,
∴∠CAB=∠ACH=45°,
∴直线AC的解析式为y=x+1,
∵△DEF是以EF为底的等腰直角三角形,
∴∠DEF=45°,
∴∠DEF=∠ACH,
∴EF∥y轴,
∵DE=AC=2,
∴EF=4,
设F(m,-m2+m+),则E(m,m+1),
∴(m+1)-(-m2+m+)=4,
解得m=3(舍)或m=-3,
∴F(-3,-6);
(3)①tan∠ENM的值为定值,不发生变化;
如图2,
∵DF⊥AC,BC⊥AC,
∴DF∥BC,
∵DF=BC=AC,
∴四边形DFBC是矩形,
作EG⊥AC,交BF于G,
∴EG=BC=AC=2,
∵EN⊥EM,
∴∠MEN=90°,
∵∠CEG=90°,
∴∠CEM=∠NEG,
∴△ENG∽△EMC,
∴,
∵F(-3,-6),EF=4,
∴E(-3,-2),
∵C(1,2),
∴EC==4,
∴=2,
∴tan∠ENM==2;
∵tan∠ENM的值为定值,不发生变化;
②点P经过的路径是线段P1P2,如图3,
∵四边形BCEG是矩形,GP2=CP2,
∴EP2=BP2,
∵△EGN∽△ECB,
∴,
∵EC=4,EG=BC=2,
∴EB=2,
∴,
∴EN=,
∵P1P2是△BEN的中位线,
∴P1P2=EN=;
∴点M到达点C时,点P经过的路线长为.
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点,作BM⊥AE于点M,作KN⊥AE于点N,连结MO、NO,以下四个结论:①△OMN是等腰三角形;②tan∠OMN=;③BP=4PK;④PMPA=3PD2,其中正确的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂计划在规定时间内生产24 000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.
(1)求原计划每天生产的零件个数和规定的天数;
(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y=m是平行于X轴的直线,将抛物线y=-x2-4x在直线y=m上侧的部分沿直线 y=m翻折,翻折后的部分与没有翻折的部分组成新的函数图像,若新的函数图像刚好与 直线y=-x有3个交点,则满足条件的m 的值为_________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,BC边上的高AD=6,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,存在EB+EF的最小值,则这个最小值是( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误的是( )
A. 中位数是6.5 B. 平均数高于众数
C. 极差为3 D. 平均每周锻炼超过6小时的人占总数的一半
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com