精英家教网 > 初中数学 > 题目详情

已知:如图,BD、CE都是△ABC的高,在BD上截取BF,使BF=AC,在CE的延长线取一点G,使CG=AB.试探索线段AF和AG的关系,并说明理由.

解:AG=AF且AG⊥AF.
理由如下:①AF=AG,
∵BD、CE都是△ABC的高,
∴∠ACG+∠BAC=90°,∠FBA+∠BAC=90°,
∴∠ACG=∠FBA,
∵BF=AC,CG=AB,
∴△ACG≌△FBA,
∴AF=AG.
②AF⊥AG,
∵△ACG≌△FBA,
∴∠G=∠EAF,
∵CG⊥AB,
∴∠G+∠GAE=90°,
∴∠EAF+∠GAE=90°,
∴AG⊥AF,
∴AG=AF且AG⊥AF.
分析:①AF=AG,由已知即可推可知,∠ACG+∠BAC=90°,∠FBA+∠BAC=90°,即可推出∠ACG=∠FBA,然后结合题意,即可推出△ACG≌△FBA,即可推出AF=AG;②AF⊥AG,由△ACG≌△FBA,推出∠G=∠EAF,然后根据题意推出∠G+∠GAE=90°,再通过等量代换即可推出AG⊥AF.
点评:本题主要考查全等三角形的判定与性质,同角的余角的性质,关键在于根据全等三角形的判定定理“SAS”,推出△ACG≌△FBA.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,BD是AC边上的高,DE⊥BC于E,BE:EC=5:1.若AD=2,AB=8.
求:CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,BD平分∠ABC,CE平分∠ACE,BD与CE交于点I,试说明∠BIC=90°+
12
∠A.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.
(1)求证:AB2=AE•AD;
(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,BD、CE是△ABC的两条高,M是BC的中点.求证:ME=MD.

查看答案和解析>>

同步练习册答案