【题目】某市正在创建“全国文明城市”,光明学校拟举办“创文知识”抢答案,欲购买两种奖品以抢答者.如果购买种25件,种20件,共需480元;如果购买种15件,种25件,共需340元.
(1)两种奖品每件各多少元?
(2)现要购买两种奖品共100件,总费用不超过1120元,那么最多能购买种奖品多少件?
【答案】(1)A种奖品每件16元,B种奖品每件4元;(2) 60件
【解析】
(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种25件,B种20件,共需480元;如果购买A种15件,B种25件,共需340元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设A种奖品购买m件,则B种奖品购买(100-m)件,根据总价=单价×购买数量结合总费用不超过1120元,即可得出关于m的一元一次不等式,解之取其中最大的整数即可得出结论.
解:(1)设种奖品每件元,种奖品每件元
根据题意,得
解得
答:A种奖品每件16元,B种奖品每件4元.
(2)设种奖品购买件,种奖品购买件
根据题意,得
解得
∴种奖品最多购买60件
答:A种奖品最多购买60件.
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN.
(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;
(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;
(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.
(1)求该双曲线所表示的函数解析式;
(2)求等边△AEF的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图像与x轴交于A、B两点,与y轴交于C点,且对称轴为直线x=1,点B坐标为(-1,0).则下面的四个结论:①2a+b=0;②4a-2b+c<0;③ac>0;④当y<0时,x<-1或x>3.其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,AB=9,N为AB上一点,且AN=3,BC的高线AD交BC于点D,M是AD上的动点,连结BM,MN,则BM+MN的最小值是 ( )
A. B. C. D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中,每个小方格都是边长为1的正方形,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:
(1)△ABC的面积为 ;
(2)将△ABC绕原点O 旋转180°,画出旋转后的△A1B1C1;
(3)将△ABC向右平移4个单位长度,画出平移后的△A2B2C2;
(4)△A1B1C1与△A2B2C2成中心对称吗?若是,请直接写出对称中心的坐标: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,圆E是三角形ABC的外接圆, ∠BAC=45°,AO⊥BC于O,且BO=2,CO=3,分别以BC、AO所在直线建立x轴.
(1)求三角形ABC的外接圆直径;
(2)求过ABC三点的抛物线的解析式;
(3)设P是(2)中抛物线上的一个动点,且三角形AOP为直角三角形,则这样的点P有几个?(只需写出个数,无需解答过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在四边形中,对角线相交于点,且,作,垂足为点,与交于点,.
(1)如图中的图1,求证:;
(2)如图中的图2,是的中点,若,,在不添加任何辅助线的情况下,请找出图中的四个三角形,使得每个三角形的面积都等于面积的倍,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0.1<x2<2.下列结论:4a+2b+c<0;2a+b<0;b2+8a>4ac;
a<﹣1;其中结论正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com