【题目】类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.
(1)概念理解:
如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.
(2)问题探究:
①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由.
②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?
(3)拓展应用:
如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,AC= AB,试探究BC,CD,BD的数量关系.
【答案】
(1)
解:AB=BC或BC=CD或CD=AD或AD=AB(任写一个即可)
(2)
解:①正确,理由为:
∵四边形的对角线互相平分,∴这个四边形是平行四边形,
∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,
∴这个“等邻边四边形”是菱形;
②∵∠ABC=90°,AB=2,BC=1,
∴AC= ,
∵将Rt△ABC平移得到△A′B′C′,
∴BB′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC= ,
(I)如图1,当AA′=AB时,BB′=AA′=AB=2;
(II)如图2,当AA′=A′C′时,BB′=AA′=A′C′= ;
(III)当A′C′=BC′= 时,
如图3,延长C′B′交AB于点D,则C′B′⊥AB,
∵BB′平分∠ABC,
∴∠ABB′= ∠ABC=45°,
∴∠BB′D=′∠ABB′=45°
∴B′D=B,
设B′D=BD=x,
则C′D=x+1,BB′= x,
∵在Rt△BC′D中,BD2+(C′D)2=(BC′)2
∴x2+(x+1)2=( )2,
解得:x1=1,x2=﹣2(不合题意,舍去),
∴BB′= x=
(Ⅳ)当BC′=AB=2时,如图4,与(Ⅲ)方法一同理可得:BD2+(C′D)2=(BC′)2,
设B′D=BD=x,
则x2+(x+1)2=22,
解得: x1= ,x2= (不合题意,舍去),
∴BB′= x=
(3)
解:BC,CD,BD的数量关系为:BC2+CD2=2BD2,如图5,
∵AB=AD,
∴将△ADC绕点A旋转到△ABF,连接CF,
∴△ABF≌△ADC,
∴∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,FB=CD,
∴∠BAD=∠CAF, =1,
∴△ACF∽△ABD,
∴ = ,∴ BD,
∵∠BAD+∠ADC+∠BCD+∠ABC=360°,
∴∠ABC+∠ADC﹣360°﹣(∠BAD+∠BCD)=360°﹣90°=270°,
∴∠ABC+∠ABF=270°,
∴∠CBF=90°,
∴BC2+FB2=CF2=( BD)2=2BD2,
∴BC2+CD2=2BD2.
【解析】(1)由“等邻边四边形”的定义易得出结论;(2)①先利用平行四边形的判定定理得平行四边形,再利用“等邻边四边形”定义得邻边相等,得出结论;②由平移的性质易得BB′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC= ,再利用“等邻边四边形”定义分类讨论,由勾股定理得出结论;(3)由旋转的性质可得△ABF≌△ADC,由全等性质得∠ABF=∠ADC,∠BAF=∠DAC,AF=AC,FB=CD,利用相似三角形判定得△ACF∽△ABD,由相似的性质和四边形内角和得∠CBF=90°,利用勾股定理,等量代换得出结论.
【考点精析】利用相似三角形的判定与性质对题目进行判断即可得到答案,需要熟知相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
科目:初中数学 来源: 题型:
【题目】如图,已知圆柱的底面直径BC= ,高AB=3,小虫在圆柱表面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.
(1)画出△ABC关于原点成中心对称的△A'B'C',并直接写出△A'B'C'各顶点的坐标.
(2)求点B旋转到点B'的路径长(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.
(1)求直线BC的表达式;
(2)垂直于y轴的直线l与抛物线交于点P(x1 , y1),Q(x2 , y2),与直线BC交于点N(x3 , y3),若x1<x2<x3 , 结合函数的图象,求x1+x2+x3的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G,
(1)观察图形,写出图中所有与∠AED相等的角.
(2)选择图中与∠AED相等的任意一个角,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列四个结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△AED的周长是9.其中正确的结论是(把你认为正确结论的序号都填上.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?( )
A.1
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),(x1 , 0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方.下列结论:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1<0.其中正确结论有 . (填序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com