精英家教网 > 初中数学 > 题目详情

【题目】问题原型:在图①的矩形MNPQ中,点E、F、G、H分别在NP、PQ、QM、MN上,若∠1=2=3=4,则称四边形EFGH为矩形MNPQ的反射四边形.

操作与探究:在图②,图③的矩形ABCD中,AB=4,BC=8E、F分别在BC、CD边上,试利用正方形网格分别作出两图中矩形ABCD的反射四边形EFGH,并求出每个反射四边形EFGH的周长.

发现与应用:由前面的操作可以发现一个矩形有不同的反射四边形,且这些反射四边形的周长都相等,若在图①矩形MNPQ中,MN=3,NP=4则其反射四边形EFGH的周长为  

【答案】(1)见解析;(2)8;(3)10

【解析】

(1)、根据反射四边形的含义和E、F点的位置画出即可;(2)、根据勾股定理求出边长,即可求出周长;(3)、延长GHPN的延长线于点A,过点GGKNPK,证明Rt△FPERtFPB全等,从而求出GB的长度,根据四边形周长等于2GB得出答案.

(1)作图如下:

(2)在图2中,EF=FG=GH=HE==2∴四边形EFGH的周长为4×2=8

在图3中,EF=GH=,FG=HE==3

∴四边形EFGH的周长为2×+2×3=2+6=8

(3)如图4,延长GHPN的延长线于点A,过点GGKNPK,

∵∠1=2,1=5,∴∠2=5.

在△FPE和△FPB中,∴Rt△FPERtFPB(ASA),EF=BF,EP=PB,

同理:AH=EH,NA=EN.AB=2NP=8.∵∠B=90°﹣5=90°﹣1,A=90°﹣3,

∴∠A=B.GA=GB.KB=AB=4,GB==5,

∴四边形EFGH的周长为:2GB=10.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】 x 满足 (9x)(x4)=4 (4x)2+(x9)2 的值.

9x=ax4=b (9x)(x4)=ab=4a+b=(9x)+(x4)=5

(9x)2+(x4)2=a2+b2=(a+b)22ab=522×4=13

请仿照上面的方法求解下面问题:

(1) x 满足 (5x)(x2)=2 (5x)2+(x2)2 的值

(2)已知正方形 ABCD 的边长为 x E F 分别是 AD DC 上的点,且 AE=1 CF=3 ,长方形 EMFD 的面积是 48 ,分别以 MF DF 作正方形,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点FAD上,点EBC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为且∠AFG=60°,GE=2BG,则折痕EF的长为( )

A. 1 B. C. 2 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)已知是直角三角形,,直线l经过点,分别从点向直线l作垂线,垂足分别为.当点位于直线l的同侧时(如图,易证.如图2,若点在直线l的异侧,其它条件不变,是否依然成立?若成立,请写出证明过程;若不成立,请说明理由.

2)变式一:如图3中,,直线l经过点,点分别在直线l上,点位于l的同一侧,如果,求证:

3)变式二:如图4中,依然有,若点位于l的两侧,如果,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:甲、乙两车分别从相距300kmA,B两地同时出发相向而行,甲到B地后立即返回,下图是它们离各自出发地的距离y与行驶时间x之间的函数图象.

1)求甲车离出发地的距离y与行驶时间x之间的函数关系式,并标明自变量的取值范围;

2)若已知乙车行驶的速度是40千米/小时,求出发后多长时间,两车离各自出发地的距离相等;

3)它们在行驶过程中有几次相遇.并求出每次相遇的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为一条公路,现有一处需要爆破,爆破点周围范围内有危险,已知点与公路上的停靠站的距离为,与停靠站的距离为,且.

(1)通过计算说明公路段是否存在危险;

(2)直接写出公路存在危险的路段长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为EBD,那么下列说法错误的是(  )

A. EBD是等腰三角形,EB=ED B. 折叠后ABE和C′BD一定相等

C. 折叠后得到的图形是轴对称图形 D. EBA和EDC′一定是全等三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操作发现:如图,已知ABCADE均为等腰三角形,ABACADAE,将这两个三角形放置在一起,使点BDE在同一直线上,连接CE

1)如图1,若∠ABC=∠ACB=∠ADE=∠AED55°,求证:BAD≌△CAE

2)在(1)的条件下,求∠BEC的度数;

拓广探索:(3)如图2,若∠CAB=∠EAD120°BD4CFBCEBE边上的高,请直接写出EF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】a,b,c△ABC的三条边,关于x的方程x2+x+c-a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.

(1)试判断△ABC的形状;

(2)若a,b为方程x2+mx-3m=0的两个根,求m的值.

查看答案和解析>>

同步练习册答案