【题目】在菱形ABCD中,∠A=60°,AB=4 ,点P在菱形内,若PB=PD=4,则∠PDC的度数为 .
【答案】90°或30°
【解析】解:设AC和BE相交于点O. 当P在OA上时,
∵AB=AD,∠A=60°,
∴△ABD是等边三角形,
∴BD=AB=4 ,OB=OD= BD=2 ,∠ADO=60°,
∴cos∠PDO= = ,
∴∠PDO=30°,
∴∠ADP=60°﹣30°=30°,
∵四边形ABCD是菱形,
∴AB∥CD,
∴∠ADC=180°﹣60°=120°,
∴∠PDC=120°﹣30°=90°,
当P在OC上时,∵四边形ABCD是菱形,
∴∠DCB=∠DAB=60°,DC=BC,
∴△DBC是等边三角形,
∴∠BDC=60°,
∵∠PDO=30°,
∴∠PDC=30°,
所以答案是:90°或30°.
【考点精析】解答此题的关键在于理解等腰三角形的性质的相关知识,掌握等腰三角形的两个底角相等(简称:等边对等角),以及对菱形的性质的理解,了解菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.
科目:初中数学 来源: 题型:
【题目】某校为了解“理化生实验操作”考试的备考情况,随机抽取了一部分九年级学生进行测试,测试结果分为“优秀”、“良好”、“合格”、“不合格”四个等级,分别记为A、B、C、D.根据测试结果绘制了如下尚不完整的统计图.
(1)本次测试共随机抽取了名学生.请根据数据信息补全条形统计图;
(2)若该校九年级的600名学生全部参加本次测试,请估计测试成绩等级在合格以上(包括合格)的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B,C,D,E在⊙O上,AB⊥CB于点B,tanD=3,BC=2,H为CE延长线上一点,且AH= ,CH=5 .
(1)求证:AH是⊙O的切线;
(2)若点D是弧CE的中点,且AD交CE于点F,求证:HF=HA;
(3)在(2)的条件下,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AD⊥BC于点D,点E为AC边的中点,过点A作AF∥BC,交DE的延长线于点F,连接CF.
(1)如图1,求证:四边形ADCF是矩形;
(2)如图2,当AB=AC时,取AB的中点G,连接DG、EG,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两家园林公司承接了哈尔滨市平房区园林绿化工程,已知乙公司单独完成所需要的天数是甲公司单独完成所需天数的1.5倍,如果甲公司单独工作10天,再由乙公司单独工作15天,这样就可完成整个工程的三分之二.
(1)求甲、乙两公司单独完成这项工程各需多少天?
(2)上级要求该工程完成的时间不得超过30天.甲、乙两公司合作若干天后,甲公司另有项目离开,剩下的工程由乙公司单独完成,并且在规定时间内完成,求甲、乙两公司合作至少多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.
(1)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于点C,且B(1,0),C(0,3),将△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.
(1)求该二次函数的解析式;
(2)若点P为线段AB上的任一动点,过点P作PE∥AC,交BC于点E,连结CP,求△PCE面积S的最大值;
(3)设抛物线的顶点为M,Q为它的图象上的任一动点,若△OMQ为以OM为底的等腰三角形,求Q点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com