精英家教网 > 初中数学 > 题目详情

如图,矩形OABC在平面直角坐标系中,A(0,3),C(4,0),点P为直线AB上一动点,将直线OP绕点P逆时针方向旋转90°交直线BC于点Q,当△POQ为等腰三角形时,点P坐标为________.

P1(1,3),P2(7,3)
分析:设点P的横坐标为m,因为△POQ是等腰三角形所以PO=PQ,根据等式PA2+AO2=PB2+BQ2可求得m的值,从而就可确定点P的坐标.
解答:∵△POQ是等腰三角形,
①若P在线段AB上,∠OPQ=90°
∴PO=PQ,
又∵△OAP∽△PBQ,
∴△OAP≌△PBQ
∴PB=AO,即3=4-m,
∴m=1,即P点坐标(1,3);
②若P在线段AB的延长线上,PQ交CB的延长线于Q,PO=PQ,
又∵△AOP∽△BPQ,
∴△AOP≌△BPQ,
∴AO=PB,即3=m-4,即P点的坐标(7,3);
③当P在线段BA的延长线上时,显然不成立;
故点P坐标为P1(1,3),P2(7,3).
故答案为:P1(1,3),P2(7,3).
点评:此题考查学生对等腰三角形的性质,相似三角形的判定,勾股定理及一次函数等知识点的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形OABC在平面直角坐标系中,若OA、OC的长满足|OA-2|+(OC-2
3
)2=0

(1)求B、C两点的坐标;
(2)把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BB′的解析式;
(3)在直线BB′上是否存在点P,使△ADP为直角三角形?若存在,请直接写出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形OABC在平面直角坐标系中的位置如图所示,OA=3,AB=2.抛物线y=ax2+bx+c(a≠0)经过点A和点B,与x轴分别交于点D、E(点D在点E左侧),且OE=1,则下列结论:
①a>0;②c>3;③2a-b=0;④4a-2b+c=3;⑤连接AE、BD,则S梯形ABDE=9.
其中正确结论的个数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•昆明)如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.
(1)求抛物线的解析式;
(2)求点D的坐标;
(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•浙江二模)如图,矩形OABC在平面直角坐标系中,A(0,3),C(4,0),点P为直线AB上一动点,将直线OP绕点P逆时针方向旋转90°交直线BC于点Q,当△POQ为等腰三角形时,点P坐标为
P1(1,3),P2(7,3)
P1(1,3),P2(7,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•淮安)如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0).将矩形OABC绕点O按顺时针方向旋转135°,得到矩形EFGH(点E与O重合).
(1)若GH交y轴于点M,则∠FOM=
45
45
°,OM=
2
2
2
2

(2)将矩形EFGH沿y轴向上平移t个单位.
①直线GH与x轴交于点D,若AD∥BO,求t的值;
②若矩形EFGH与矩形OABC重叠部分的面积为S个平方单位,试求当0<t≤4
2
-2时,S与t之间的函数关系式.

查看答案和解析>>

同步练习册答案