精英家教网 > 初中数学 > 题目详情
13.如图,已知AB∥MN,BC∥NG.求证:$\frac{OA}{OM}$=$\frac{OC}{OG}$.

分析 由AB∥MN得到$\frac{OA}{OM}=\frac{OB}{0N}$,由BC∥NG得到$\frac{OC}{OG}=\frac{OB}{ON}$,通过中间比$\frac{OB}{ON}$可得到结论.

解答 证明:∵AB∥MN,
∴$\frac{OA}{OM}=\frac{OB}{0N}$,
∵BC∥NG,
∴$\frac{OC}{OG}=\frac{OB}{ON}$,
∴$\frac{OA}{OM}$=$\frac{OC}{OG}$.

点评 本题主要考查了平行线分线段成比例定理,解题的关键是找对中间比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.第二届山西文博会刚刚落下帷幕,本届文博会共推出招商项目356个,涉及金额688亿元.数据688亿元用科学记数法表示正确的是(  )
A.6.88×108B.68.8×108C.6.88×1010D.0.688×1011

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.二次函数y=x2-2mx+4m-8,当x≥2时,y随着x的增大而增大,则m的取值范围?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,在四边形ABCD中,∠B=135°,∠C=135°,AB=2$\sqrt{2}$,BC=1,CD=4$\sqrt{2}$,则AD边的长为$\sqrt{53}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知AB∥DE,BF、DF分别平分∠ABC,∠CDE,求∠C、∠F的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知x=-1是方程6(2x+m)=3m-6的解,求关于x的方程mx+2=m(1-2x)的解.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边.a+b=2,∠B=60°,则c=2$\sqrt{3}$-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知x2-2015x+1=0,
(1)求x-$\frac{1}{x}$(x>1)的值;
(2)$\frac{{x}^{2}}{{x}^{4}+{x}^{2}+1}$+$\frac{2015x}{{x}^{2}+1}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图所示,把用数字和希腊字母表示的角用三个大写字母表示.

查看答案和解析>>

同步练习册答案