精英家教网 > 初中数学 > 题目详情
2.如图,?ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C,将?ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,则点E的坐标为($\frac{12}{5}$,5).

分析 根据点A、B、D的坐标结合平行四边形的性质即可得出点C的坐标,由点C的坐标利用反比例函数图象上点的坐标特征即可得出反比例函数解析式,设点B′的坐标为(6,m),由点B′在反比例函数图象上即可求出m值,从而可找出点C′、D′的坐标,由点C′、D′的纵坐标利用反比例函数图象上点的坐标特征即可得出点E的坐标,此题得解.

解答 解:∵点A(2,0),B(6,0),D(0,3),四边形ABCD为平行四边形,
∴C(4,3).
∵反比例函数的图象经过点C,
∴反比例函数解析式为y=$\frac{12}{x}$.
设点B′的坐标为(6,m),
∵点B′在反比例函数y=$\frac{12}{x}$的图象上,
∴6m=12,解得:m=2,
∴D′(0,5),C′(4,5).
∵C′D′与双曲线交于点E,
∴E($\frac{12}{5}$,5).
故答案为:($\frac{12}{5}$,5).

点评 本题考查了反比例函数图象上点的坐标特征、平行四边形的性质以及坐标与图形变化中的平移,根据平行四边形的性质找出点C的坐标,再利用反比例函数图象上点的坐标特征求出反比例函数解析式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.用适当的方法解下列方程:
(1)(x-1)(x+3)=12;             
(2)9(x-2)2=4(x+1)2
(3)2x2-6x-1=0;                  
(4)(3x-7)2=2(3x-7).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.计算:sin30°+2-1+$\sqrt{4}$=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,直线y=$\frac{3}{4}$x-$\frac{3}{2}$与抛物线y=-$\frac{1}{4}$x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为-8.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为m,点P的横坐标为x,当△PDE周长m最大时,求点P的坐标,并求出m的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG(逆时针方向作正方形APFG),随着点P的运动,正方形的大小,位置也随之改变,当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知:如图,选段AB=4,以AB为直径作半圆O,点C为弧AB的中点,点P为直径AB上一点,联结PC,过点C作CD∥AB,且CD=PC,过点D作DE∥PC,交射线PB于点E,PD与CE相交于点Q.
(1)若点P与点A重合,求BE的长;
(2)设PC=x,$\frac{PD}{CE}$=y,当点P在线段AO上时,求y与x的函数关系式及定义域;
(3)当点Q在半圆O上时,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.为宣传2022年北京-张家口冬季奥运会,小王在网上销售一种成本为20元/件的本届冬季奥运会宣传文化衫,销售过程中的其他各种费用(不再含文化衫成本)总计50(百元),有关销售量y(百件)与销售价格x(元/件)的相关信息如下:
销售量y(百件)y=-0.1x+8y=$\frac{120}{x}$
销售价格x(元/件)30≤x≤6060<x≤80
(1)求销售这种文化衫的纯利润w(百元)与销售价格x(元/件)的函数关系式;
(2)销售价格定为多少元/件时,获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.“如果二次函数y=ax2+bx+c的图象与一次函数y=kx+b有两个公共点,那么一元二次方程ax2+bx+c=kx+b有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若方程|x2-4x+1|=a有四个解,则a的取值范围是0<a<3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.对于每个正整数n,设f(n)表示n(n+1)的末位数字,例如:f(1)=2(1×2的末尾数字),f(2)=6 (2×3的末位数字),f(3)=2(3×4的末位数字),…,则f(1)+f(2)+f(3)+…f(2016)=4032.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,需在一面墙上绘制两个形状相同的抛物绒型图案,按照图中的直角坐标系,最高点M到横轴的距离是4米,到纵轴的距离是6米;纵轴上的点A到横轴的距离是1米,右侧抛物线的最大高度是左侧抛物线最大高度的一半.(结果保留整数或分数,参考数据:$\sqrt{3}$=$\frac{7}{4}$,$\sqrt{6}$=$\frac{5}{2}$)
(1)求左侧抛物线的表达式;
(2)求右侧抛物线的表达式;
(3)求这个图案在水平方向上的最大跨度是多少米.

查看答案和解析>>

同步练习册答案