精英家教网 > 初中数学 > 题目详情
在△ABC中,AB=AC,∠A=300,将线段BC绕点B逆时针旋转600得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.
(1)如图1,直接写出∠ABD和∠CFE的度数;
(2)在图1中证明:AE=CF;
(3)如图2,连接CE,判断△CEF的形状并加以证明.
(1)15°,45°;(2)证明见解析;(3)△CEF是等腰直角三角形,证明见解析.

试题分析:(1)根据等腰三角形的性质得到∠ABC的度数,由旋转的性质得到∠DBC的度数,从而得到∠ABD的度数;根据三角形外角性质即可求得∠CFE的度数.
(2)连接CD、DF,证明△BCD是等边三角形,得到CD=BD,由平移的性质得到四边形BDFE是平行四边形,从而AB∥FD,证明△AEF≌△FCD即可得AE=CF.
(3)过点E作EG⊥CF于G,根据含30度直角三角形的性质,垂直平分线的判定和性质即可证明△CEF是等腰直角三角形.
(1)∵在△ABC中,AB=AC,∠A=300,∴∠ABC=750.
∵将线段BC绕点B逆时针旋转600得到线段BD,即∠DBC=600.∴∠ABD= 15°.
∴∠CFE=∠A+∠ABD=45°.
(2)如图,连接CD、DF.
∵线段BC绕点B逆时针旋转60?得到线段BD,∴BD=BC,∠CBD=600.∴△BCD是等边三角形.
∴CD=BD.
∵线段BD平移到EF,∴EF∥BD,EF=BD.
∴四边形BDFE是平行四边形,EF= CD.
∵AB=AC,∠A=300,∴∠ABC=∠ACB=750.∴∠ABD=∠ACD=15°.
∵四边形BDFE是平行四边形,∴AB∥FD.∴∠A=∠CFD.
∴△AEF≌△FCD(AAS).
∴AE=CF.

(3)△CEF是等腰直角三角形,证明如下:
如图,过点E作EG⊥CF于G,
∵∠CFE =45°,∴∠FEG=45°.∴EG=FG.
∵∠A=300,∠AGE=90°,∴
∵AE=CF,∴.∴.∴G为CF的中点.∴EG为CF的垂直平分线.
∴EF=EC.
∴∠CEF=∠FEG=90°.
∴△CEF是等腰直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,作直线MN,与AC交于点D,与BC交于点E,连接AE.

(1)∠ADE=       °;
(2)AE       CE(填“>、<、=”)
(3)当AB=3、AC=5时,△ABE的周长是       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在□ABCD中,E、F为BC上的两点,且BE=CF,AF=DE.
求证:(1)△ABF≌△DCE;
(2)四边形ABCD是矩形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,∠ABC=45°,过点C作CD⊥AB于点D,过点B作BM⊥AC于点M,BM交CD于点E,且点E为CD的中点,连接MD,过点D作ND⊥MD于点D,DN交BM于点N.
(1)若BC=,求△BDE的周长;
(2)求证:NE-ME=CM.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

求证:等腰三角形底边上的中点到两腰上的距离相等.(要求画图,写已知,求证和证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为(  )
A.2B.2.4C.2.6D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在矩形ABCD中,AB=16cm,AD=6cm,动点P,Q分别从A,C,同时出发,点P以2cm/s的速度向点B移动,到达B点后停止,点Q以1cm/s的速度向点D移动,到达D点后停止,P,Q两点 出发后,经过_____________秒时,线段PQ的长是10cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知一个等腰三角形有一个角为50o,则顶角是 ( )
A.50oB.80oC.50o或80oD.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列条件能判断两个三角形全等的是(    )
①两角及一边对应相等;
②两边及其夹角对应相等;
③两边及一边所对的角对应相等;
④两角及其夹边对应相等。
A.①③; B.②④;C.②③④;D.①②④.

查看答案和解析>>

同步练习册答案