精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABCBA=BC,点DAB延长线上一点,DF⊥ACFBCE,

求证:△DBE是等腰三角形.

【答案】证明见解析.

【解析】试题分析:要想证明△DBE是等腰三角形,只需证明∠BED与∠D相等即可,∠FEC与BED是对顶角,只需证∠FEC与D相等即可,而由DF⊥AC可得∠C+∠FEC=90°,∠A+∠D=90°,因此只需证∠A=∠C,要想证明∠A=∠C,需证AB=BC,AB=BC 是已知,从而问题得证.

试题解析:在△ABC中,BA=BC,

∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D,

∵∠FEC=BED,∴∠BED=D,BD=BE,即DBE是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.

(1)求证:ED是⊙O的切线;
(2)当OE=10时,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是等边三角形ABC内的一点,且PA=3,PB=3,PC=5,BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是(

A. △BPQ是等边三角形 B. △PCQ是直角三角形 C. ∠APB=150° D. ∠APC=135°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请仔细观察图中等边三角形图形的变化规律,写出你发现关于等边三角形内一点到三边距离的数学事实:_____________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答
(1)解方程: +1=
(2)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2017OB2017.则点B2017的坐标_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点O是平行四边形ABCD两条对角线的交点,点P是AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为E、F

(1)如图1,当点P与点O重合时,求证:OE=OF

(2)直线BP绕点B逆时针方向旋转,当∠OFE=时,有OE=OF,如图2,线段CF、AE、OE之间有怎样的数量关系?给出证明。

(3)当点P在图3位置,且∠OFE=时,线段CF、AE、OE之间有怎样的数量关系?(直接写出结论,无需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.

(1)求证:△ADF≌△ABE;
(2)若BE=1,求tan∠AED的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣1(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴交于点C.

(1)求抛物线的解析式及顶点D的坐标;
(2)点P在抛物线的对称轴上,当△ACP的周长最小时,求出点P的坐标;
(3)点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的Rt△DNM与Rt△BOC相似?若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案