精英家教网 > 初中数学 > 题目详情
6.当-2≤x≤1时,二次函数y=-(x-m)2+m2+1有最大值4,则实数m的值为(  )
A.-$\frac{7}{4}$B.$\sqrt{3}$或-$\sqrt{3}$C.2或-$\sqrt{3}$D.2或-$\sqrt{3}$或-$\frac{7}{4}$

分析 求出二次函数对称轴为直线x=m,再分m<-2,-2≤m≤1,m>1三种情况,根据二次函数的增减性列方程求解即可.

解答 解:二次函数对称轴为直线x=m,
①m<-2时,x=-2取得最大值,-(-2-m)2+m2+1=4,
解得m=-$\frac{7}{4}$,不合题意,舍去;
②-2≤m≤1时,x=m取得最大值,m2+1=4,
解得m=±$\sqrt{3}$,
∵m=$\sqrt{3}$不满足-2≤m≤1的范围,
∴m=-$\sqrt{3}$;
③m>1时,x=1取得最大值,-(1-m)2+m2+1=4,
解得m=2.
综上所述,m=2或-$\sqrt{3}$时,二次函数有最大值4.
故选:C.

点评 本题考查了二次函数的最值,熟悉二次函数的性质及图象是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.方程x(x-1)=0的解是(  )
A.x=0B.x=1C.x1=0,x2=-1D.x1=0,x2=1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知直角三角形中一个锐角为30°,则另一个锐角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知,等腰Rt△ABC,∠BAC=Rt∠,在直角边AB的左侧作直线AP,点B关于直线AP的对称点为E,连结BE,CE,其中CE交直线AP于点F.
(1)依题意,在图1中补全示意图;当∠PAB=18°时,求∠ACF的度数;
(2)当0°<∠PAB<45°时,利用图1,求证:∠PAB+∠ACE=45°;
(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FC之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.甲、乙两人同在如图所示的地下车库等电梯,两人到1至4层的任意一层出电梯,
(1)请你用画树状图或列表法求出甲、乙二人在同一层楼出电梯的概率;
(2)小亮和小芳打赌说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该游戏是否公平?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.把下列各数填在相应的大括号里:
   $\frac{1}{2}$π,-$\frac{1}{6}$,0,$\frac{22}{7}$,$\sqrt{8}$,-3.24,5.232232223…,3.1415.
整数:{0,$\sqrt{9}$,+5 }
负分数:{-$\frac{1}{6}$,-3.24  }
正有理数:{$\sqrt{9}$,+5,$\frac{22}{7}$,3.1415 }
无理数:{$\frac{1}{2}π$,$\sqrt{8}$,5.232232223…}.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.一个不透明的袋子中装有3个红球和若干个白球,它们除颜色外其余都相同.现随机从袋中摸出一个球,若颜色是白色的概率为$\frac{2}{3}$,则袋中白球的个数是6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,△ABC中,E是BC上的一点,F是AC上一点,且3BE=BC,4CF=AF,AE、BF交于P点,如果△ABP的面积是30平方厘米,求△ABC的面积$\frac{120}{11}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知两点D(1,-3),E(-1,-4),试在直线y=x上确定一点P,使点P到D、E两点的距离之和最小,则最小值为$\sqrt{29}$.

查看答案和解析>>

同步练习册答案