精英家教网 > 初中数学 > 题目详情
9.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=75度.

分析 只要证明△ABE≌△ADF,可得∠BAE=∠DAF=(90°-60°)÷2=15°,即可解决问题.

解答 解:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=∠BAD=90°,
在Rt△ABE和Rt△ADF中,
$\left\{\begin{array}{l}{AB=AD}\\{AE=AF}\end{array}\right.$,
∴△ABE≌△ADF,
∴∠BAE=∠DAF=(90°-60°)÷2=15°,
∴∠AEB=75°,
故答案为75.

点评 本题考查正方形的性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.

已知抛物线y=-$\frac{2\sqrt{3}}{3}$x2-$\frac{4\sqrt{3}}{3}$x+2$\sqrt{3}$与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.
(1)填空:该抛物线的“梦想直线”的解析式为y=-$\frac{2\sqrt{3}}{3}$x+$\frac{2\sqrt{3}}{3}$,点A的坐标为(-2,2$\sqrt{3}$),点B的坐标为(1,0);
(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;
(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,由四个正方体组成的几何体的左视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍.购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元.
(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;
(2)若学校购买乒乓球拍和羽毛球拍共30副,且支出不超过1480元,则最多能够购买多少副羽毛球拍?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,梯形ABCD中,AB∥CD,∠D=(  )
A.120°B.135°C.145°D.155°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图所示,点P到直线l的距离是(  )
A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.写出一个比3大且比4小的无理数:π.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,抛物线l1:y=x2-4的图象与x轴交于A,C两点,抛物线l2与l1关于x轴对称.
(1)直接写出l2所对应的函数表达式;
(2)若点B是抛物线l2上的动点(B与A,C不重合),以AC为对角线,A,B,C三点为顶点的平行四边形的第四个顶点为D,求证:D点在l2上.
(3)当点B位于l1在x轴下方的图象上,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它面积的最值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,一次函数y=kx+1图象与反比例函数y=$\frac{m}{x}$的图象交于P、Q两点,过点P作PA⊥x轴,一次函数图象分别交x轴、y轴于C、D两点,$\frac{CD}{CP}$=$\frac{1}{3}$,且A(4,0).
(1)求一次函数和反比例函数的表达式;
(2)求△ADP的面积;
(3)求反比例函数值大于一次函数值时,自变量x的取值范围.

查看答案和解析>>

同步练习册答案