精英家教网 > 初中数学 > 题目详情
(1)如图在Rt△ABC中,CD是AB边上的高,若AD=8,BD=2,则CD=
4
4

(2)在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.
分析:(1)根据图形可得△BDC∽△CDA,从而利用对应边成比例可得出CD的长度;
(2)分情况讨论,如图所示:利用勾股定理分别求出AD、CD的长度,从而得出BC的长度,继而可得出△ABC的周长.
解答:解:(1)∵∠BCD+∠ACD=90°,∠CAD+∠ACD=90°,
∴∠CAD=∠BCD,
∴△BDC∽△CDA,
故可得:
CD
AD
=
BD
CD
,即CD2=AD•BD=16,
∴CD=4;

(2)①在RT△ABD中,BD=
AC2-AD2
=9,在RT△ADC中,CD=
AC2-AD2
=5,
故BC=BD+CD=14,
从而可得△ABC的周长为42.
②在RT△ABD中,BD=
AC2-AD2
=9,在RT△ADC中,CD=
AC2-AD2
=5,
故BC=BD-CD=4,
从而可得△ABC的周长为32.
点评:此题考查了勾股定理及相似三角形的判定与性质,求解第二问的关键是利用勾股定理分别求出BD和CD,注意不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图在Rt△AOB中,∠BAO=90°,O为坐标原点,B在x轴正半轴上,A在第一象限.OA和AB的长是方程x2-3
5
x+10=0
两根,且OA<AB.
(1)求直线AB的解析式;
(2)将△AOB沿垂直于x轴的线段CD折叠(点C在x轴上,且不与点B重合,点D在线段AB上),使点B落在x轴上,对应点为E,设点C的坐标为(x,0).
①是否存在这样的点C,使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由;
②设△CDE与△AOB重叠部分的面积为S,直接写出S与点C的横坐标x之间的函数关系式(包括自变量x的取值范围).

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图在Rt△ABC中,∠ACB=90°,sinA=
23
,点D、E分别在AB、AC边上,DE⊥AC,DE=2,DB=9,求DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,动点E以2cm/秒的速度从点A向点C运动(与点A,C不重合),过点E作EF∥AB交BC于F点.精英家教网
(1)求AB的长;
(2)设点E出发x秒后,线段EF的长为ycm.
①求y与x的函数关系式,并写出自变量x的取值范围; 
②试问在AB上是否存在P,使得△EFP为等腰直角三角形?若存在,请说出共有几个,并求出相应的x的值;若不存在,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桥东区二模)如图在Rt△OAB中,∠OAB=90°,OA=AB=6.
(1)请你画出将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1
(2)线段OA1的长度是
6
6
,∠AOB1的度数是
135°
135°

(3)连接AA1,求证:四边形OAA1B1是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在Rt△ABC中,AD平分∠CAB,CD=8cm,那么点D到AB的距离是
8
8
 cm.

查看答案和解析>>

同步练习册答案