精英家教网 > 初中数学 > 题目详情

【题目】如图,∠1和∠2互补,∠C=EDF.

(1)判断DFEC的关系为   

(2)试判断DEBC的关系,并说明理由.

(3)试判断∠DEC与∠DFC的关系并说明理由.

【答案】(1)DF∥EC;(2)DE∥BC,理由见解析;(3)∠DEC=∠DFC,理由见解析.

【解析】

(1)依据∠1和∠2互补,即可得到DF∥EC;
(2)依据DF∥EC,可得∠C+∠CFD=180°,再根据∠C=∠EDF,即可得到∠EDF+∠DFC=180°,进而得出DE∥BC;
(3)依据DE∥BC,DF∥EC,即可得到∠DEC+∠C=180°,∠DFC+∠C=180°,进而得出∠DEC=∠DFC.

1)∵∠1和∠2互补,

DFEC(同旁内角互补,两直线平行)

故答案为:DFEC;

(2)DEBC,理由:

DFEC,

∴∠C+CFD=180°,

又∵∠C=EDF,

∴∠EDF+DFC=180°,

DECF,

DEBC;

(3)DEC=DFC,理由:

DEBC,DFEC,

∴∠DEC+C=180°,DFC+C=180°,

∴∠DEC=DFC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况 (超产记为正.减产记为负):

(1) 写出该厂星期一生产工艺品的数量;

(2) 本周产量中最多的一天比最少的一天多生产多少个工艺品?

(3) 请求出该工艺厂在本周实际生产工艺品的数量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AMBN,A=80°,点P是射线AM上动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AMC、D.

(1)求∠CBD的度数;

(2)当点P运动时,那么∠APB:ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律;

(3)当点P运动到使∠ACB=ABD时,求∠ABC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列各式:(ab2=a2b2,(ab3=a3b3,(ab4=a4b4

回答下列三个问题:

1)验证:(100=   2100×100=   

2)通过上述验证,归纳得出:(abn=    abcn=   

3)请应用上述性质计算:(﹣0.1252017×22016×42015

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中(AD>AB),点EBC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是(  )

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1 000元;经粗加工后销售,每吨利润可达4 500元;经精加工后销售,每吨利润涨至7 500元.

当地一家蔬菜公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司制订了三种方案:

方案一:将蔬菜全部进行粗加工;

方案二:尽可能多的对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接销售;

方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.

你认为选择哪种方案获利最多?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1)试判断BE与FH的数量关系,并说明理由;
(2)求证:∠ACF=90°;
(3)连接AF,过A、E、F三点作圆,如图2,若EC=4,∠CEF=15°,求 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCD O 是对角线AC 的中点,EF 过点O,AD,BC 分别相交于点E,F,GH 过点O,AB,CD 分别相交于点G,H,连接EG,FG,FH,EH.求证:四边形EGFH 是平行四边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点P在△ABC的边AC上,下列条件中,不能判断△ABP∽△ACB的是(
A.∠ABP=∠C
B.∠APB=∠ABC
C.AB2=AP?AC
D.

查看答案和解析>>

同步练习册答案