精英家教网 > 初中数学 > 题目详情
14.在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA.
(1)如图(1)求证:四边形ABCD是菱形;
(2)如图(2)若E是AB延长线上的一点,BE=AD,连接CE,则在不添加任何辅助线的情况下,直接写出图(2)中面积等于△BCE面积的所有三角形(△BCE除外).

分析 (1)首先利用SSS定理证明△ABC≌△ADC可得∠BCA=∠DCA,再由等腰三角形的三线合一性质得出OB=OD,证出四边形ABCD是平行四边形,即可得出结论;
(2)由菱形的性质得出△ABC的面积=△ADC的面积=△ABD的面积=△BCD的面积,再由已知条件得出BE=AB,得出△ABC的面积=△ADC的面积=△ABD的面积=△BCD的面积=△BCE的面积,即可得出结果.

解答 (1)证明:在△ABC和△ADC中,$\left\{\begin{array}{l}{AB=AD}&{\;}\\{BC=DC}&{\;}\\{AC=AC}&{\;}\end{array}\right.$,
∴△ABC≌△ADC(SSS),
∴∠BCA=∠DCA,
∵BC=DC,
∴OB=OD,
又∵OC=OA,
∴四边形ABCD是平行四边形,
∵AB=AD,
∴四边形ABCD是菱形;
(2)解:图(2)中面积等于△BCE面积的三角形为△ABC、△ADC、△ABD、△BCD.理由如下:
∵四边形ABCD是菱形,
∴AC⊥BD,
∴△ABC的面积=△ADC的面积=△ABD的面积=△BCD的面积,
∵BE=AD,AB=AD,
∴BE=AB,
∴△BCE的面积=△ABC的面积,
∴△ABC的面积=△ADC的面积=△ABD的面积=△BCD的面积=△BCE的面积,
∴图(2)中面积等于△BCE面积的三角形为△ABC、△ADC、△ABD、△BCD.

点评 此题主要考查了全等三角形的判定与性质,等腰三角形的性质,菱形的判定与性质;熟练掌握菱形的判定方法,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.将下列多项式分解因式,结果中不含因式x+1的是(  )
A.x2-1B.x2-2x+1C.x(x-2)+(x-2)D.x2+2x+1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.老北京的老行当中有一行叫做“抓彩卖糖”:商贩将高丽纸裁成许多小条,用矾水在上面写上糖的块数,最少一块,多的是三块或五块,再将枝条混合在一起.游戏时叫儿童随意抽取一张,然后放入水罐中浸湿,即出现白道儿,按照上面的白道儿数给糖.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块塘的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块塘的纸条的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{1}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,若AB=CD,AE=DF,CE=BF,则AB与CD平行吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.用代入法解下列方程组:
(1)$\left\{\begin{array}{l}{2x+y=3}\\{x+2y=-6}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x+5y=4}\\{3x-6y=5}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{3x+y=8}\\{3x-y=4}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{2x+5y=8}\\{x-3y=-7}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图.过原点O的直线y=k1x和y=k2x与反比例$\frac{1}{x}$(x>0)的象分别交于点A、C.
(1)若k1=2、k2=$\frac{1}{2}$,求OA和OC的长;
(2)延长OA交双曲线y=$\frac{1}{x}$另一支于点B.连接AC、BC,当AC⊥BC时.试探究k1,k2之间的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知样本x1,x2,…,xn的方差为2,平均数是6,则3x1+2,3x2+2,…,3xn+2的方差是18,平均数是20.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,飞机的飞行高度为2500米,在A点处测得某电视塔尖点C的俯角为30°,保持方向不变前进1200米到达B点时测得该电视塔尖点C的俯角为45°.请计算电视塔的高度(结果保留整数,$\sqrt{2}$≈1.414,$\sqrt{3}$≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.数据1,0,-3,2,3,2,2的方差是$\frac{8}{7}$.

查看答案和解析>>

同步练习册答案