【题目】如图,已知直线y= x﹣3与x轴、y轴分别交于A、B两点,P在以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB,则△PAB面积的最大值是 .
【答案】
【解析】解:过点C作CD⊥AB于D,延长DP交⊙C于另一点P′,此时△P′AB的面积最大,如图所示.
当x=0时,y=﹣3,
∴点B(0,﹣3);
当y= x﹣3=0时,x=4,
∴点A(4,0).
∵点C(0,1),
∴BC=1﹣(﹣3)=4,AO=4,BO=3,AB= =5.
∵∠ABO=∠CBD,∠AOB=∠CDB=90°,
∴△AOB∽△CDB,
∴ ,
∴CD= = ,
∴DP′=CD+CP′= +1= .
∴S△P′AB= ABP′D= ×5× = .
故答案为: .
过点C作CD⊥AB于D,延长DP交⊙C于另一点P′,此时△P′AB的面积最大,将x=0、y=0代入y= x﹣3中求出与之相对应的y、x的值,进而可得出点A、B的坐标,由∠ABO=∠CBD、∠AOB=∠CDB=90°即可证出△AOB∽△CDB,再根据相似三角形的性质求出CD的长度,将其+1即可得出DP′的长度,利用三角形的面积公式即可求出△PAB面积的最大值.
科目:初中数学 来源: 题型:
【题目】如图,在直线1上依次摆放着四个正方形和三个等腰直角三角形(阴影图形),已知三个等腰直角三角形的面积从左到右分别为1、2、3,四个正方形的面积从左到右依次是S1、S2、S3、S4,则S1+S2+S3+S4的值为( )
A. 4 B. 5 C. 6 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点M为直线AB上一动点, 都是等边三角形,连接BN
求证: ;
分别写出点M在如图2和图3所示位置时,线段AB、BM、BN三者之间的数量关系不需证明;
如图4,当时,证明: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,△ABC的外角∠ABD的平分线与∠ACB的平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.
求证:(1)MO=MB;(2)MN=CN﹣BM.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中,A(9,0),直线l:y=.P,Q两点分别同时从O,A出发,P点沿直线l向上运动,Q点沿x轴向左运动,它们的速度相同.连接PQ,当
PQ⊥x轴时,P,Q两点同时停止运动.设P点的横坐标为m(m≥0),
(1)求m的取值范围;
(2)如图1,当△OPQ是以OP为腰的等腰三角形时,求m的值;
(3)如果以PQ为边在上方作正方形PQEF,以AQ为边在上方作正方形 QAGH,如图2,
①用含m的代数式表示E点的坐标;
②当正方形PQEF的某个顶点(Q点除外)落在正方形 QAGH的边上,请直接写出m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀把它均分成四个小长方形,然后按图②的形状拼成一个正方形.
(1)你认为图②中的阴影部分的正方形的边长等于多少?
(2)请用两种不同的方法求图②中阴影部分的面积.
(3)观察图②你能写出下列三个代数式之间的等量关系吗?
代数式:(m+n)2,(m-n)2,mn.
(4)根据(3)题中的等量关系,解决如下问题:
已知a+b=7,ab=5,求(a-b)2的值.(写出过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOC与∠BOD都是直角,∠BOC=65°
(1)求∠AOD的度数;
(2)∠AOB与∠DOC有何大小关系?
(3)若不知道∠BOC的具体度数,其他条件不变,(2)的关系仍成立吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.有以下结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( ).
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴和y轴上,OA=3,OB=4.把△AOB绕点A顺时针旋转120°,得到△ADC.边OB上的一点M旋转后的对应点为M′,当AM′+DM取得最小值时,点M的坐标为( )
A.(0, )
B.(0, )
C.(0, )
D.(0,3)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com