【题目】如图,矩形中, 、交于点, , 平分交于点,连接,则________。
【答案】75°
【解析】试题解析:∵四边形ABCD是矩形,
∴AD∥BC,∠ADC=90°,OA=OC,OB=OD,AC=BD,
∵DE平分∠ADC,
∴∠ADE=∠CDE=∠ADC=45°,
∵∠BDE=15°,
∴∠ADB=∠ADE-∠BDE=30°,
∵AD∥BC,
∴∠ADB=∠DBC=30°,
∴OA=OD=OB=OC,
∴∠OBC=∠OCB=30°,
∴∠DOC=∠OBC+∠OCB=60°,
∵OD=OC,
∴△ODC是等边三角形,
∴DC=OC,
∵AD∥BC,
∴∠ADE=∠DEC,.
∵∠ADE=∠CDE,
∴∠DEC=∠CDE,
∴CE=DC,
∴CE=OC,
∴∠COE=∠OEC,
∵∠OCB=30°,
∴∠COE=(180°-∠OCE)=75°,
科目:初中数学 来源: 题型:
【题目】已知:如图,在等边△ABC中取点P,使得PA,PB,PC的长分别为3,4,5,将线段AP以点A为旋转中心顺时针旋转60°得到线段AD,连接BD,下列结论:
①△ABD可以由△APC绕点A顺时针旋转60°得到;②点P与点D的距离为3;③∠APB=150°;
④S△APC+S△APB=,其中正确的结论有( )
A. ①②④B. ①③④C. ①②③D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点A在射线CE上,∠C=∠D.
(1)如图1,若AC∥BD,求证:AD∥BC;
(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;
(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂按用户的月需求量x (件)完成一种产品的生产,其中x>0.每件的售价为18万元,每件的成本为y (万元),y与x的关系式为(a,b为常数).经市场调研发现,月需求量x与月份n (n为整数,1≤n≤12)的关系式为x=n2-13n+72,且得到了下表中的数据.
月份n(月) | 1 | 2 |
成本y(万元/件) | 11 | 12 |
(1)请直接写出a,b的值;
(2)设第n个月的利润为w(万元),请求出W与n的函数关系式,并求出这一年的12个月中,哪个月份的利润为84万元?
(3)在这一年的前8个月中,哪个月的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AC=120cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒.过点D作DF⊥BC于点F,连接DE,EF.当四边形AEFD是菱形时,t的值为( )
A. 20秒 B. 18秒 C. 12 秒 D. 6秒
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上有A,B两点,分别对应的数为a,b。| a |=3,| b |=9,
(1)求a与b的值。
(2)求出线段AB的长度。
(3)若数轴上有一点C,且C到B的距离是C到A距离的3倍,直接写出点C所表示的数。
(4)点P从点A出发,先向左移动1个单位长度,再向右移动2个单位长度,再向左移动3个单位长度,再向右移动4个单位长度········,求出1889次移动后的点P所表示的数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】,是平面直角坐标系中的任意两点,我们把叫做两点间的“直角距离”,记作.
(1)令,为坐标原点,则________;
(2)已知,动点满足,且均为整数:
①满足条件的点有多少个?
②若点在直线上,请写出符合条件的点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车从A地将一批物品匀速运往B地,已知甲出发0.5h后乙开始出发,如图,线段OP、MN分别表示甲、乙两车离A地的距离S(km)与时间t(h)的关系,请结合图中的信息解决如下问题:
(1)计算甲、乙两车的速度及a的值;
(2)乙车到达B地后以原速立即返回.
①在图中画出乙车在返回过程中离A地的距离S(km)与时间t(h)的函数图象;②请问甲车在离B地多远处与返程中的乙车相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )
A. AF=AE B. △ABE≌△AGF C. EF= D. AF=EF
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com